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Recursive Flexible Multibody System Dynamics
Using Spatial Operators
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This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody
systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-
mode models are used for the deformation of each individual body. The algorithms are based on two spatial
operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix
leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward
dynamics for the system. The second (innovations) factorization of the mass matrix, leads to an operator
expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The
primary focus is on serial chains, but extensions to general topologies are also described. A comparison of
computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than
the composite-body algorithm for most flexible multibody systems.
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Nomenclature* &(x,y) = [

E(R6><6;
0 1]

spatial transformation operator that
transforms spatial velocities and forces
between points/frames x and y

= vector from point/frame x to point/frame y, Individual Body Nodal Data

e®?

= [x]* € ®R3*3; skew-symmetric cross-product
matrix associated with the three-dimensional

Fy = body reference frame with respect to which
the deformation field for the kth body is
measured; the motion of this frame

vector x i i
= dx/dt; time derivative of x with respect to an cpe}racterlzes the motion of the kth body as a
. . rigid body
inertial frame . . kth
= time derivative of x with respect to the Tk = Jth node on.the ¢ b0(.1y
b - . K (k) = structural stiffness matrix for the kth body,
ody-fixed (rotating) frame € ROms (k) x6ms (k)
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*Coordinate-free spatial notation!:2 is used in this paper. A spatial velocity of a frame is a six-dimensional quantity whose upper three elements
are the angular velocity and whose lower three elements are the linear velocity. A spatial force is a six-dimensional quantity whose upper three
elements are a moment vector and whose lower three elements are a force vector.

A variety of indices are used to identify different spatial quantities. Some examples are as follows: ¥5(Jjk), the spatial velocity of the jth node
on the kth body; Vs(k)=col{ Vs(jr}}, the composite vector of spatial velocities of all the nodes on the kth body; Vs =col{ Vs(k)}, the vector of
spatial velocities of all the nodes for all the bodies in the serial chain. The index k is used to refer to both the £th body as well as the kth body
reference frame Fy, with the usage being apparent from the context. Some key quantities are defined in the Nomenclature (see also Fig. 1).
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Ik, ji) = vector from &, to the location (after
deformation) of the jth node reference frame
on the kth body, lo(k,ji)+8,(ji) € R?

= vector from &, to the location (before
deformation) of the jth node reference frame

on the kth body, € ®3
_ [ L(0P) m(jk)ﬁ(m] ¢ @Sx6:
-m()plUx)  mUl ’
spatial inertia about the nodal reference frame
for the jth node on the £th body
= structural mass matrix for the £th body,
diag{MS(jk)} € R67s(k)x6ns(k)
m(ji) = mass of the jth node on the kth body
ng(k) = number of nodes on the kth body
() = vector from the nodal reference frame to the
node center of mass for the jth node on the
kth body, € ®?
9Uix) = inertia tensor about the nodal reference frame
for the jth node on the kth body, € ®3*3
u(jr) = spatial displacement of node j; the
translational component of #(j¢) is 6;(J¢),
whereas its time derivative with respect to
the body frame F is
.. 8.(Jk)
u =
Ux [av(jk)]
= translational deformation of the jth node on
the kth body, € ®3
= deformation linear velocity of the jth node on
the kth body with respect to the body frame
Fy, €R3
= deformation angular velocity of the jth node
on the kth body with respect to the body
frame F, € ®R?

lo(k,Jx)

M;(ji)

M (k)

0,(Jx)

6, (k)

8.,(Jk)

Individual Body Modal Data

K, (k) = modal stiffness matrix for the kth body,
€ @RI XK

= modal mass matrix for the kth body,
€ (R&)‘L(k)xﬁl(k)

= n,,(k)+6; number of deformation plus
rigid-body degrees of freedom for the kth
body

n,(k) = number of assumed modes for the kth body

(k) = vector of modal deformation variables for the

kth body, € ®"©

(k) = col {II¥(k)} € ®ROsx6nm(K); the modal matrix
for the kth body [The rth column of II(k) is
denoted II,(k) € ®R%"s® and is the mode shape
function for the rth assumed mode for the
kth body; the deformation field for the kth
body is given by u(k)=1I(k)n(k), whereas
(k) =TIk (k).

= [I{(k), ....T0; ] € RS ¥ modal spatial
influence vector for the jth node [The spatial
deformation of node j, is given by
u(j) =M (km(k).}

= modal spatial displacement vector for the rth
mode at the j,th nodal reference frame, € ®R®

M, (k)

N(k)

IV(k)

I/ (k)

Multibody Data
[IT*(k)1*

k - @ﬁ(k)xs;
ae [ qs(k,tk):! ¢

relates spatial forces and velocities between
node #; and frame

a,(k) = modal Coriolis and centrifugal accelerations
for the kth body, € RO

B(k) = [p(k, 14),0(k,24), ..., dlk,n5 (k)] € REXEms (B
relates the spatial velocity of frame  to the
spatial velocities of all of the nodes on the

kth body when the body is regarded as being
rigid
®Bk+1,k) =[0,0(tr.1, k)] € REXIUP; relates spatial
forces and velocities between node #;.,.
and frame ¥,
= modal gyroscopic forces for the kth body,
€ ROUK)

0

b (k)

Clk,k—1) = | ¢(tx, k—1)] € ®RSnsthrxs6

0

(¢ = vector of Coriolis, centrifugal, and elastic
forces for the multibody system, € ®%

dy = node on the kth body to which the kth hinge
is attached

f(k) = effective spatial force at frame F;, € RS

S (K) = modal spatial force of interaction between the
kth and (k + 1)th bodies, € @K

SsUx) = spatial force at node j;, € R®

Hg(k) = H(k)$(Oy, k) € ®RntH*6; joint map matrix
referred to frame &, for the kth hinge

H*(k) = joint map matrix for the kth hinge; € ®Réxm®
[We have that A, (k)=H*(k)B(k).]

I - [Hg(k iy Nk X TUK).

o [0 Hy(k) } <o ’
(deformation plus hinge) modal joint map
matrix for the kth body

am = multibody system mass matrix, € ®%*%

N = number of bodies in the serial flexible
multibody system

N = LI, 9U(k); overall deformation plus hinge
degrees of freedom for the serial chain

IU(k) = n,,(k)+ n,.(k); number of deformation plus

. hinge degrees of freedom for the kth body

€N = £}, 9U(k); overall degrees of freedom in the
serial chain obtained by disregarding the
hinge constraints

n.(k) = number of degrees of freedom for the kth
hinge

O = reference frame for the kth hinge on the kth
body; this frame is fixed to node d

of = reference frame for the kth hinge on the
(k + 1)th body; this frame is fixed to node
feat

Tk) = generalized force for the kth body, € R*®

te = node on the kth body to which the (k — 1)th
hinge is attached

w(k) 6.

Vik) V() [v(k)] € R
spatial velocity of the kth body reference
frame &, with w(k) and v(k) denoting the
angular and linear velocities respectively of
frame &,

V(O) = spatial velocity of frame O, € R®

V(O;) = spatial velocity of frame OF, € ®®

- (k)  JU(K).

Vn() [V(k)] €O
modal spatial velocity of the kth body

Vi(Jr) = spatial velocity of the jth node on the kth
body, € R®_

(k) = V,,(k) € ®R%O; modal spatial acceleration of
the kth body

as(fr) = spatial acceleration of the jth node on the kth
body, € ®S

B(k) = vector of generalized velocities for the kth

hinge, € R0
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Ak
Aty = [A Ek;] € &%

relative spatial velocity for the kth hinge
defined as the spatial velocity of frame Oy
with respect to frame O

(k) = vector of configuration variables for the kth
hinge, € ®" 0

®k+1,k) =Qk+1DB(Kk+1,k)
~ [o (K + DI*¢(tis1, k)

0 ok +1,k)

interbody transformation operator that relates

modal spatial forces and velocities between
the kth and (kX + 1)th bodies

ﬁ(k)J

k = € RUP;

X [mk)
vector of (deformation plus hinge) generalized
velocities for the kth body

(k)
Mk = € RUAP,
1 [0(/«)]
vector of (deformation plus hinge) generalized
configuration variables for the kth body

:l € (Rﬁl(k+ l)xf)l(k);

I. Introduction

HIS paper uses spatial operators'? to formulate dynamics

and develop efficient recursive algorithms for flexible
multibody systems. Flexible spacecraft, limber space manipu-
lators, and vehicles are important examples of flexible multi-
body systems. Key features of these systems are the large num-
ber of degrees of freedom and the complexity of their
dynamics models.

The main contributions of the paper are 1) providing a
high-level architectural understanding of the structure of the
mass matrix and its inverse; 2) showing that the high-level
expressions can be easily implemented within the very well
understood Kalman filtering and smoothing architecture;
3) developing very efficient inverse and forward dynamics
recursive algorithms; and 4) analyzing the computational cost
of the new algorithms. These contributions add to the rapidly
developing body of research in the recursive dynamics of flex-
ible multibody systems.3-3 ‘

1t is assumed that the bodies undergo small deformations so
that a linear model for elasticity can be used. However, large
articulation at the hinges is allowed. No special assumptions
are made regarding the geometry of the component bodies. To
maximize applicability, the algorithms developed here use
finite element and/or assumed-mode models for body flexibil-
ity. For notational simplicity, and without any loss in gen-
erality, the main focus of this paper is on flexible multibody
serial chains. Extensions to tree and closed-chain topologies
are discussed.

In Sec. II we derive the equations of motion and recursive
relationships for the modal velocities, modal accelerations,
and modal forces. This section also contains a derivation of
the Newton-Euler operator factorization of the system mass
matrix. A recursive Newton-Euler inverse dynamics algorithm
to compute the vector of generalized forces corresponding to
a given state and vector of generalized accelerations is de-
scribed in Sec. 1II.

In Sec. 1V, the Newton-Euler factorization of the mass ma-
trix is used to develop a partly recursive composite-body for-
ward dynamics algorithm for computing the generalized accel-
erations of the system. The recursive part is for computing the
multibody system mass matrix. This forward dynamics algo-
rithm is in the vein of well-established approaches®’ that re-
quire the explicit computation and inversion of the system
mass matrix. However, the new algorithm is more efficient
because the mass matrix is computed recursively and be-
cause the detailed recursive computations follow the high-

level architecture (i.e., roadmap) provided by the Newton-
Euler factorization.

In Sec. V we derive new operator factorization and inversion
results for the mass matrix that lead to the recursive articu-
lated-body forward dynamics algorithm. A new mass matrix
operator factorization, referred to as the ‘‘innovations”’ fac-
torization, is developed. The individual factors in the innova-
tions factorization are square and invertible operators. This is
in contrast to the Newton-Euler factorization in which the
factors are not square and therefore not invertible. The inno-
vations factorization leads to an operator expression for the
inverse of the mass matrix. Based on this expression, in Sec. VI
we develop the recursive articulated-body forward dynamics
algorithm for the multibody system. This algorithm is an alter-
native to the composite-body forward dynamics algorithm and
requires neither the explicit formation of the system mass ma-
trix nor its inversion. The structure of this recursive algorithm
closely resembles those found in the domain of Kalman filter-
ing and smoothing.?

In Sec. VII we compare the computational costs for the two
forward dynamics algorithms. It is shown that the articulated-
body forward dynamics algorithm is much more efficient than
the composite-body forward dynamics algorithm for typical
flexible multibody systems. In Sec. VIII we discuss the exten-
sions of the formulation and algorithms in this paper to tree
and closed-chain topology multibody systems.

II. Equations of Motion for Flexible Serial Chains

In this section, we develop the equations of motion for a
serial, flexible, multibody system with N flexible bodies. Each
flexible body is assumed to have a lumped mass model consist-
ing of a collection of nodal rigid bodies. Such models are
typically developed using standard finite element structural
analysis software. The number of nodes on the kth body is
denoted n,(k). The jth node on the kth body is referred to as
the jith node. Each body has associated with it a body refer-
ence frame, denoted & for the kth body. The deformations of
the nodes on the body are described with respect to this body
reference frame, whereas the rigid body motion of the kth
body is characterized by the motion of frame .

The six-dimensional spatial deformation (slope plus trans-
lational) of node j, (with respect to frame ;) is denoted
u(j,) € ®S. The overall deformation field for the kth body is
defined as the vector

u(k) = col{u(jk)] € 6k

The vector from frame &, to the reference frame on node j; is
denoted I(k, j;) € ®3.

With M,(j,) € ®R¢*¢ denoting the spatial inertia of the jth
node, the structural mass matrix for the kth body M (k) is the
block diagonal matrix

diag{M,(ji)] € REmsWx6n(8)
The structural stiffness matrix is denoted

Ks(k) € (RGns(k)x 6ns (k)

Both M (k) and K (k) are typically generated using finite
element analysis.

As shown in Fig. 1, the bodies in the serial chain are num-
bered in increasing order from tip to base. We use the termi-
nology inboard (outboard) to denote the direction along the
serial chain toward (away from) the base body. The kth body
is attached on the inboard side to the (k + 1)th body via the
kth hinge and on the outboard side to the (k —1)th body
via the (k — 1)th hinge. On the kth body, the node to which
the outboard hinge [the (k — 1)th hinge] is attached is referred
to as node ¢;, whereas the node to which the inboard hinge
(the kth hinge) is attached is denoted node di. Thus the kth
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node J,

&0 (after dbformation) (k-1 hinge

node dpg. 1)

(k-1)™ body
(k+1)™ body reference
frame Fi

Towards base #————— ————— Towards tip

Fig. 1 Links and hinges in a flexible serial multibody system.

hinge couples together nodes d; and ¢, ;. Attached to each of
these pairs of adjoining nodes are the kth hinge reference
frames denoted O, and O; , respectively. The number of de-
grees of freedom for the kth hinge is denoted n,(k). The
vector of configuration variables for the kth hinge is denoted
6(k) € ®"®, whereas its vector of generalized speeds is de-
noted B(k) € ®R"® In general, when there are nonholonomic
hinge constraints, the dimensionality of 8(k) may be less than
that of 8(k). For notational convenience, and without any loss
in generality, it is assumed here that the dimensions of the
vectors 8(k) and B(k) are equal. In most situations, B(k) is
simply 8. However, there are many cases where the use of
quasicoordinates simplifies the dynamical equations of motion
and an alternative choice for (k) may be preferable. The
relative spatial velocity Ay, (k) across the hinge is given by
H*(k)B(k), where H*(k) denotes the joint map matrix for the
kth hinge.

Assumed modes typically are used to represent the deforma-
tion of flexible bodies, and there is a large body of literature
dealing with their proper selection. There is however a close
relationship between the choice of a body reference frame and
the type of assumed modes. The complete motion of the flex-
ible body is contained in the knowledge of the motion of the
body reference frame and the deformation of the body as seen
from this body frame. In the multibody context, it is often
convenient to choose the location of the kth body reference
frame F, as a material point on the body and fixed to node d;
at the inboard hinge. For this choice, the assumed modes are
cantilever modes and node d; exhibits zero deformation
[u(d;)=0]. Free-free modes are also used to represent body
deformation and are often preferred for control analysis and
design. For these modes, the reference frame F is not fixed to
any node but is rather assumed to be fixed to the undeformed
body, and as a result all nodes exhibit nonzero deformation.
The dynamics modeling and algorithms developed here handle
both types of modes, with some additional computational
simplifications arising from Eq. (1) when cantilever modes
are used. For a related discussion regarding the choice of refer-
ence frame and modal representations for a flexible body see
Ref. 9.

We assume here that a set of n,(k) assumed modes has
been chosen for the kth body. Let II/(k) € R® denote the
modal spatial displacement vector at the j,th node for the
rth mode. The modal spatial displacement influence vector
IV(k) € RS> for the j,th node and the modal matrix
(k) € RO *nm(k) for the kth body are defined as follows:

(k) = [T{(k),...,IYj_(k)|] and TI(k) = col{IV(k)}
The rth column of II(k) is denoted II,(k) and defines the
mode shape for the rth assumed mode for the kth body. Note

that for cantilever modes we have

%(k)=0 for r=1--n,(k) 4))

With »(k) € & denoting the vector of modal deformation
variables for the kth body, the spatial deformation of node

Jr and the spatial deformation field u (k) for the kth body are
given by
u(je)=Ikm(k) and  u(k)=T(k)(k) 2
The vector of generalized configuration variables #(k) and
generalized speeds x(k) for the kth body are defined as

(k) & [;’83} € @RI

(k) A [giiﬂ ¢ QI 3)

where (k) a N, (K)+n,.(k). The overall vectors of general-
ized configuration variables ¢ and generalized speeds x for the
serial multibody system are given by

dAcol{d(k)} € ®"  and xLcolfx(k)] € RT (@)

where
N
NnA Y k)
k=1

denotes the overall number of degrees of freedom for the
multibody system. The state of the multibody system is defined
by the pair of vectors {,x}. For a given system state {d,x},
the equations of motion define the relationship between the
vector of generalized accelerations x and the vector of general-
ized forces T € ®™ for the system. The inverse dynamics prob-
lem consists of computing the vector of generalized forces T
for a prescribed set of generalized accelerations x. The forward
dynamics problem is the converse one and consists of comput-
ing the set of generalized accelerations k resulting from a set of
generalized forces 7. The equations of motion for the system
are developed in the remainder of this section.

A. Recursive Propagation of Velocities

Let V(k) € ®¢ denote the spatial velocity of the kth body
reference frame &, . The spatial velocity V,(¢,.1) € ®% of node
¢+ (on the inboard of the kth hinge) is related to the spatial
velocity V(k + 1) of the (k + 1)th body reference frame F. ;,
and the modal deformation variable rates 5(k + 1) as follows:

Viltir) = 0*(k + 1,1 ) V(K +1) + itte 1)
=¥k + 1Lt ) V(k+ D+ Ik + Dk +1)  (5)

The aforementioned spatial transformation operator ¢(x,y)
€ ®9%6 is defined to be

I I(x,9)

X, y)= 6

*(x,¥) [0 7 6

where /(x,y) € ®? denotes the vector between the points x

and y. Note that the following important (group) property

holds for arbitrary points x, ¥, and z:

o(x, »)9(¥,2) = o(x,2)

As in Eq. (5), and all through this paper, the index k& will be
used to refer to both the £th body as well as to the kth body
reference frame F, with the specific usage being evident from
the context. Thus, for instance, V' (k) and ¢(k, f;) are the same
as V(F,) and ¢(Fy, 1), respectively.

The spatial velocity V(07 ) of frame O (on the inboard side
of the kth hinge) is related to V(#4,;) via

VO ) = ¢™ (141,00 Viltes ) Q)
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Since the relative spatial velocity A, (k) across the kth hinge is
given by H*(k)B(k), the spatial velocity V(0,) of frame O, on
the outboard side of the kth hinge is

V(Or) = V(Oi ) + H*(k)B(k) (®)

The spatial velocity V' (k) of the kth body reference frame is
given by
V(k) = $*©c, K[ V(O ~ i(d)]
= $*(Ok, k) V(O,) — 14k )i(k)] ©)
Putting together Egs. (5) and (7-9), it follows that
V(k) = ¢*(k + LLKYV(k +1) + ¢*(feo1, Ik + Dk +1)
+ $*(Ok K[ H*(K)B (k) — T4k )i (k)] (10)

Thus with ﬁ(k)én,,,(k)+76, and using Eq. (10), the modal
spatial velocity V,,, (k) € &% for the kth body is given by

A ﬁ(k)] .
v, (k) 2 [V(k) = 0%k + 1,K)V,,(k +1)
+ 3C*(k)x(k) € ®RD an

where the interbody transformation operator ®(.,.) and the
modal joint map matrix JC(k) are defined as

sk + 1,40y A |0 BEEH DI b)) o o
0 ok +1,k)
(12)
I [T =
Jo(k) & RIUR X Tk
(k) [0 Ho(k) € 13)
where
Hs(k) & H(k)$(Oy, k) € Rrri0x6
(k) & ¢*(0, k)T19(k) € RE<TH
Note that
dk+1,k)= @k +1)B(k +1,k) (14)
where
[Hf(k)]*] 5
Qk) & [ € @Ix6
O gk,
B(k+1L,k)2 [0, $(tkr1 k)] € REFD (15)
Also, the modal joint map matrix JC(k) can be partitioned as
3Cs(k) o1
3C(k) = € RIURXIUK) 16
" ['}Cr(k)} (16)
where
3 (k) a [[’ —[Hg(k)]*] € Rum (B XU
3¢, (k) & [0, Hsr(k)¢(®k,k)] € R XK a7
With '

we define the spatial operator &4 as

0 0 0 0 0
&2,1) 0 0 0
§,2 ] 0 93,2 - 0 0| € ®FxH
0 0 HN,N-1) 0 18)

Using the fact that &, is nilpotent (i.e., 8) =0), we define the
spatial operator ¢ as

PAMI—84] '=T+85+ - +8)!

I 0 - 0
e,y I - 0 -

= : : € RAXA 19
BN, 1) ®N,2) - I

where
(i, j) B e, i—1)--- (i +1,/) for i>j
Also, define the spatial operator
3 £ diag{3C(k)} € RTXT
When these spatial operators are used, and with
Vi & col (¥, (k)} € ®%

defined, it follows from Eq. (11) that the spatial operator
expression for V,, is given by

Vyn = ®*3C*x (20)

B. Modal Mass Matrix for a Single Body

With V,(j;) € ®® denoting the spatial velocity of node j,
and

Vi(k) A col{V,(ji)] € Rms®

the vector of all nodal spatial velocities for the kth body, it
follows [see Eq. (5)] that

Vi(k) = B*(k)V (k) + ti(k) = [H(k), B*(k)] Va(k) (21)
where

B(k) & [¢(k + 11),8(k2¢), ..., ok, ns(K)] € RE*6mH
2)

Since M, (k) is the structural mass matrix of the kth body,

when Eq. (21) is used, the kinetic energy of the kth body can
be written in the form

BVFROM(K)Vs(k) = V2 Vi (k)M (k) Vo (k)

where
A H*(k)} .
Mm(k)_[ B(kS M (k)[TI(k), B*(k))
~ [n*(k)Ms(k)H(k) H*(k)Ms(k)B*(k)]
T L BUOM(TI(k)  B()M,(k)B*(k)
_ | ME ) Mr{lr(k):] TT(4) X LK)
‘[M,;f(k) my] € @
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Corresponding to the generalized speeds vector x(k), M, (k)
as defined in Eq. (23) is the modal mass matrix of the kth
body. In the block partitioning in Eq. (23), the superscripts
f and r denote the flexible and rigid blocks, respectively.
Thus, M/J(k) represents the flex/flex coupling block, while
M7 (k) is the flex/rigid coupling block of M, (k). We will use
this notational convention throughout this paper. Note that
M7 (k) is precisely the rigid body spatial inertia of the kth
body. Indeed, M, (k) reduces to the rigid-body spatial inertia
when the body flexibility is ignored, i.e., no modes are used,
since in this case 7n,,(k) =0 [and II(k) is null].

Because the vector /(k,j;) from &, to node j, depends on the
deformation of the node, the operator B(k) is also deforma-
tion dependent. From Eq. (23) it follows that while the block
M/ (k) is deformation independent, both the blocks MY (k)
and M, are deformation dependent. The detailed expression
for the modal mass matrix can be defined using modal inte-
grals that are computed as a part of the finite element struc-
tural analysis of the flexible bodies. These expressions for
the modal integrals and the modal mass matrix of the kth
body can be found in Ref. 10. Often the deformation depen-
dent parts of the modal mass matrix are ignored, and free-free
eigenmodes are used for the assumed modes II(k). When this
is the case, MY/ (k) is zero and MJJ(k) is diagonal.

C. Recursive Propagation of Accelerations

Differentiating the velocity recursion equation (11), we ob-
tain the following recursive expression for the modal spatial
acceleration a,, (k) € ®R%® for the kth body:

. n(k
(k) 2V, (k) = [;’f( kﬂ

=®*(k + 1, k), (k+1) + I*(k)x(k) + a,, (k) (24)

where a(k)= V(k), and the Coriolis and centrifugal accelera-
tion term a,, (k) € ®R7W is given by

do*(k +1,k) dsex(k)

an(k)= & Va(k+1) +

x(k)  (@25)

The detailed expressions for a,,(k) can be found in Ref. 10.
Defining

am =col{a, (k)] € ®%  and  a, = col{an, (k)] € R®

and using spatial operators, we can re-express Eq. (24) in the
form

oy = ®¥(H*x +ay) (26)

The vector of spatial accelerations of all of the nodes for the
kth body

a;(k) A col{a, (ji)] € BEm®
is obtained by differentiating Eq. (21):

as(k) = Vi(k) = [TI(k), B*(Kk)|an(k) +atk)  (27)

where

d[I(k), B*(k)]

a(k) & colfa (i)} = P

Vu(k) € RO (28)

D. Recursive Propagation of Forces

Let f(k — 1) € ®R® denote the effective spatial force of inter-
action, referred to frame &, _,, between the kth and (k — 1)th
bodies across the (k& — 1)th hinge. Recall that the (k — I)th
hinge is between node ¢, on the kth body and node d; _, on the

(k — Dth body. With f,(j;) € R denoting the spatial force at
a node j, the force balance equation for node ¢, is given by

Ss(ti). = ¢tk — Df(k = 1) + Mot )os(£x) + b(1x) + fx(2x)
(29

For all nodes other than node 7, on the kth body, the force
balance equation is of the form

JsUi) = M (J)as () + b(je) + Fx(e) (30)
In Egs. (29) and (30), fx(jx) are components of the vector
Jx(k) = K (k)u(k) € ®éms®

denotes the vector of spatial elastic strain forces for the nodes
on the kth body, whereas b(j;) € ®R® denotes the spatial gyro-
scopic force for node j; and is given by

BGIUe (i) ] .
m(j)Ei @) p i)

where w(Jj;) € & denotes the angular velocity of node j;. Col-
lecting together the preceding equations and defining

b(j) = [ 3D

0
Clhk,k—DA | ¢(tp, k—1)| € ®nstoxs

0

b(k) & col{b(jy)] € RO (32)
it follows from Egs. (29) and (30) that
Sstky=Clk, k=1 fk—1)
+ M (k) (k) + b(k) + Ko(k)u(k) (33)
where

fo(k) & col{ £, (i)} € REm®

Noting that

(k) = B(k)fs(k) (34

and using the principle of virtual work, it follows from Eq.
(21) that the modal spatial forces f,,(k) € ®R%® for the kth
body are given by

II*(k) * (k) f, (k)
(k)4 s :[ }
Sm(K) [B(k)}f(k) 1K) (33)

Premultiplying Eq. (33) by

I*(k)

B(k)
and using Egs. (23), (27), and (35) leads to the following recur-
sive relationship for the modal spatial forces:

I*(k)C(k, k—1)

B(k)C(k.k 1) }f”‘ —1) + My (k) (k)

fm(k)=[

+ b, (k) + K, (k)d(k)

_ [m'(k)]*

¢(k,tk):|¢(tk’k =) f(k ~ 1) + My, (K)o (k)



JAIN AND RODRIGUEZ: FLEXIBLE MULTIBODY SYSTEM DYNAMICS 1459

+ b (k) + K, (k)d(k)

=&k, k~ 1) frn(k —1) + M, (K)a,,, (k)

+ b (k) + K, (k)0(k) (36)
Here we have defined

IT*(k)

B(k)] [6(k)+ M, (k)a(k)] € RTP G7)

b (k)& [

and the modal stiffness matrix

II*(K)K(K)Ik) 0

K, (k)& [ o 0] € RIOUWIXTK) (38)

The expression for K,,(k) in Eq. (38) uses the fact that the
columns of B*(k) are indeed the deformation dependent rigid
body modes for the kth body and hence they do not contribute
to its elastic strain energy. Indeed, when a deformation-depen-
dent structural stiffness matrix K (k) is used, we have

K, (k)B*(k)=0 (39
However, the common practice (also followed here) of using a
constant, deformation-independent structural stiffness matrix
leads to the anomalous situation wherein Eq. (39) does not
hold exactly. We ignore these fictitious extra terms on the
left-hand side of Eq. (39).
The velocity-dependent bias term b,,(k) is formed using
modal integrals generated by standard finite element pro-
grams, and a detailed expression for it is given in Ref. 10.

From Eq. (36), the operator expression for the modal spatial
forces

Fm & col{fu(k)] € RT
for all of the bodies in the chain is given by
S = B(Myp 0t + by + Ky 9) (40)
where |
M,, 8 diag({M,, (k)] € RT*T
K, 8 diag{K,,(k)} € RTXT
by & col{by (k)] € RT

From the principle of virtual work, the generalized forces vec-
tor T € ®™ for the multibody system is given by the expression

T=%fm 4D

E. Operator Expression for the System Mass Matrix

Collecting together the operator expressions in Eqgs. (20),
(26), (40), and (41), we have

V= ®*30*x
oy = P*¥(3C*x +ay)
Sm =Myt + by + K,y )
= &M, *3C*x + (M, P*a,, + b,, + K, )
T =3f, = IL¢M,d*IC*x + KX®(M, P*a,, +b,,)

=M+ C 42)

where
M A JCEM,, d*3C* € RI XN
C A 30O(M, % ay + by + Ku ) € ®F 43)

Here 9N is the system mass matrix for the serial chain and the
expression JCPM,, P*IC* is referred to as the ‘“Newton-Euler
operator factorization’’ of the mass matrix. € is the vector of
Coriolis, centrifugal, and elastic forces for the system.

It is noteworthy that the operator expressions for 9 and C
are identical in form to those for rigid multibody systems.!-!!
Indeed, the similarity is more than superficial, and the key
properties of the spatial operators that are used in the analysis
and algorithm development for rigid multibody systems also
hold for the spatial operators defined here. As a consequence,
a large part of the analysis and algorithms for rigid muitibody
systems can be easily carried over and applied to flexible multi-
body systems. That is the approach adopted here.

HI. Inverse Dynamics Algorithm

This section describes a recursive Newton-Euler inverse dy-
namics algorithm for computing the generalized forces T, for
a given set of generalized accelerations x and system state
{%,x}. The inverse dynamics algorithm also forms a part of
forward dynamics algorithms such as those based on compos-
ite body inertias or the conjugate gradient method.!?

Collecting together the recursive equations in Egs. (11),
(24), (36), and (41), we obtain the following recursive Newton-
Euler inverse dynamics algorithm:

Va(N+1)=0, a,(N+1)=0

fork=N,...,1
Vi (k) = ®*(k + 1,k)V,, (k + 1) + 3C*(k)x(k)
am(k) = ®*(k +1,k)a,(k+1) + IC*(k)x(k) + an (k)
end loop
Sm(0) =0
fork=1,...,N
Sm(k) = (k. k ~ 1) firu(k — 1) + My (K)ot (k) + by (k)
+ Kn(k)d(k)
T(k) = 3C(k)fm(k)
end loop (44)
The structure of this algorithm closely resembles the recursive
Newton-Euler inverse dynamics algorithm for rigid multibody
systems.b13 All external forces on the kth body are handled by
absorbing them into the gyroscopic force term b,,(k). Base
mobility is handled by attaching an additional six-degree-of-
freedom hinge between the mobile base and an inertial frame.
By taking advantage of the special structure of ®(k + 1,k)
and JC(k) in Eqgs. (12) and (13), the Newton-Euler recursions
in Eq. (44) can be further simplified. Using block partitioning

and the superscripts f and r as before to denote the flexible and
rigid components, we have

f
v (i) = [Vm(k)], o () = [a{nw)]

Vi(k) ay, (k)
fé(k)] [ Tf(k)}
= , T(k) =
(k) [f,;(k) 0 T'(k)
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It is easy to verify that Eq. (45) is a simplified version of the

inverse dynamics algorithm in Eq. (44).

Va(N+1) =0, oap(N+1)=0

for k=N,...,1
Vi (k) = a(k)
Vi(k) = (111, K)C*(k + 1)V (k + 1)
+ 3C(Kk)B(K) — T§(Kya(k)
ol (k) = 7i(k)
oy (k) = $* (1 1,K)@* (k + Dt (k +1)
+ H3(k)B(k) — TI§(k)ii(k) + a}, (k)
end loop (45)

Sm(©) =0

fork=1,...,N

Im(k) = QK)G(15, k = 1) [ (k = 1) + M (Kt (K)
+ bu(k) + K (K)S(k)

T(k) = [Tf(k)} _ [f,ﬁ(k)—tﬂg(k)]*f,;(k)]
T(k)] Hy(k) S (k)

end loop

Flexible multibody systems have actuators typically only at the
hinges. Thus, for the kth body, only the subset of the general-
ized forces vector T'(k) corresponding to the hinge actuator
forces T'(k) can be set, whereas the remaining generalized
forces T/(k) are zero. Therefore, in contrast with rigid multi-
body systems, flexible multibody systems are underactuated
systems,!* since the number of available actuators is less than
the number of motion degrees of freedom in the system. For
such underactuated systems, the inverse dynamics computa-
tions for the generalized force T are meaningful only when the
prescribed generalized accelerations x form a consistent data
set. For a consistent set of generalized accelerations, the in-
verse dynamics computations will lead to a generalized force
vector T such that 7/(.)=0.

IV. Composite-Body Forward Dynamics Algorithm

The forward dynamics problem for a multibody system re-
quires computing the generalized accelerations x for a given
vector of generalized forces 7 and state of the system {d,x}.
The composite-body forward dynamics algorithm described
below consists of the following steps: 1) computing the system
mass matrix 9, 2) computing the bias vector €, and 3) numer-
ically solving the following linear matrix equation for x:

Myx=T-€ (46)

Later in Sec. V we describe the recursive articulated-body for-
ward dynamics algorithm that does not require the explicit
computation of either M or C.

It is evident from Eq. (46) that the components of the vector
C are the generalized forces for the system when the general-
ized accelerations x are all zero. Thus € can be computed using
the inverse dynamics algorithm in Eq. (45). We describe next
an efficient composite-body-based recursive algorithm for the
computation of the mass matrix . This algorithm is based on
the following lemma, which contains a decomposition of the
mass matrix into block diagonal, block upper triangular, and
block lower triangular components.

Lemma 1: Define the composite body inertias R(k)
€ RIUxNUK recursively for all of the bodies in the serial chain
as follows:

RW0)=0
for k=1,...,N
R(k) =¥k, k — DRk - 1)®*(k,k— 1)+ M, (k)

end loop 47

Also define
R & diag{R(k)} € R%*™

Then we have the following spatial operator decomposition

®M,,&* =R + ®R + RP* (48)
where 2 1.
Proof: See Appendix A. [

Physically, R(k) is the modal mass matrix of the composite
body formed from all of the bodies outboard of the kth hinge
by freezing all of their (deformation plus hinge) degrees of
freedom. It follows from Eq. (43) and Lemma 1 that

M = FCPM,, $*3C* = ICRIC* + FCPRIC* + JCRP*3C*
(49)
Note that the three terms on the right of Eq. (49) are block
diagonal, block lower triangular, and block upper triangular,
respectively. The following algorithm for computing the mass
matrix M computes the elements of these terms recursively:
RWO)=0
fork=1,...,N
R(k)y=®(k,k —1)R(k —D®*(k,k— 1)+ M, (k)
= QK)P(Lek — DR (k — 1)*(24,k —1)@*(k)
+ M, (k)
X (k)= R(k)3C*(k)
Nk, k) = JC(k) X (k)
p
forj=(k+1),...,N
X()y=2e(,j-DX({ -1
< = Q)i —DX(j-1)

M(j, k) = M*(k, ) = I())X()

Lend loop
end loop (50)

The main recursion proceeds from tip to base and computes
the blocks along the diagonal of 9. As each such diagonal
element is computed, a new recursion to compute the off-diag-
onal elements is spawned. The structure of this algorithm
closely resembles the composite rigid-body algorithm for com-
puting the mass matrix of rigid multibody systems.%!? Like the
latter, it is also highly efficient. Additional computational sim-
plifications of the algorithm arising from the sparsity of both
JCs(k) and 3C,(k) are easy to incorporate.
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V. Factorization and Inversion of the Mass Matrix

An operator factorization of the system mass matrix 9T,
denoted the ‘‘innovations operator factorization,” is derived
in this section. This factorization is an alternative to the New-
ton-Euler factorization in Eq. (43) and, in contrast with the
latter, the factors in the innovations factorization are square
and invertible. Operator expressions for the inverse of these
factors are developed and these immediately lead to an opera-
tor expression for the inverse of the mass matrix. The operator
factorization and inversion results here closely resemble the
corresponding results for rigid multibody systems (see Ref. 1).

Given below is a recursive algorithm that defines some re-
quired articulated-body quantities:

PH0)=0
fork=1,...,N

Pk)=®(k,k—-1DP*(k—-1)®*(k,k—-1)
+ M, (k) € RIOXRUB
D(k) = 3C(k)P(k)3C*(k) € RIUK*T0
G (k) = P(k)3C*(k)D ~ (k) € RIUD Xk
K(k +1,k) = ®(k + 1,k)G (k) € RIUO*TH
(k) =1 — G(k)3C(k) € RTUW TR
P (k) =7(k)P(k) € ®RTPXN)
V(k +1,k) = &k + 1,k)7(k) € R0
end loop (625)
The operator P € ®%*¥ is defined as a block diagonal matrix
with the kth diagonal element being P(k). The quantities de-
fined in Eq. (51) form the component elements of the follow-
ing spatial operators:
DA 3epie* = diag{D (k)] € RF*™
G2 P3e*D ' = diag{G (k)] € RTx™

KA8,G ¢ @%xx

Ey A 8,7 € RIXT (52)

The only nonzero block elements of K and &y are K(k +1,k)
and ¥(k + 1,k), respectively, along the first subdiagonal.

As in the case for §5, 8¢ is nilpotent, so we can define the
operator ¥ as follows:

I 0 - 0
¥(2,1) I 0 _
VA(I-8y) = . , € RTXT
Y(N,1) ¥(N,2) --- I (53)
where

Y(i,/)A¥(,i—1)---¥(j+1,j) for i>j

The structure of the operators &y and V¥ is identical to that of
the operators & 3 and ® except that the component elements are
now ¥(i,j) rather than ®(7,j). Also, the elements of ¥ have
the same semigroup properties as the elements of the operator
®, and as a consequence, high-level operator expressions in-
volving them can be directly mapped into recursive algorithms,

and the explicit computation of the elements of the operator ¥
is not required.

The innovations operator factorization of the mass matrix is
defined in the following lemma.

Lemma 2:

M =[I+ICSK]|D[I+ IHIK]* 54)

Proof: See Appendix A. ad

Note that the factor [ +J®K] € R X% is square, block
lower triangular and nonsingular, whereas D is a block diag-
onal matrix. This factorization provides a closed-form expres-
sion for the block LDL* decomposition of 9. The following
lemma gives the closed-form operator expression for the in-
verse of the factor [I + JCPK].

Lemma 3:

[I+3C®K]~ =[] ~3F¥K] (55)

Proof: See Appendix A. ]
It follows from Lemmas 2 and 3 that the operator expression

for the inverse of the mass matrix is given by Lemma 4.
Lemma 4:

M1 =[I-3C¥YK)*D~'[]-3C¥K] (56)

Once again, note that the factor [/ — IC¥ K] is square, block
lower triangular, and nonsingular, and so Lemma 4 provides
a closed-form expression for the block LDL* decomposition
of M—1,

V1. Articulated-Body Forward Dynamics Algorithm

We first use the operator expression for the mass matrix
inverse developed in Sec. V to obtain an operator expression
for the generalized accelerations k. This expression directly
leads to a recursive algorithm for the forward dynamics of the
system. The structure of this algorithm is completely identical
in form to the articulated-body algorithm for serial rigid multi-
body systems. The computational cost of this algorithm is
further reduced by separately processing the flexible and hinge
degrees of freedom at each step in the recursion, and this leads
to the articulated-body forward dynamics algorithm for serial
flexible multibody systems. This algorithm is an alternative to
the composite-body forward dynamics algorithm developed
earlier.

The following lemma describes the operator expression for
the generalized accelerations x in terms of the generalized
forces T.

Lemma 5:

%= ~3¥YKI*D [T~ ¥ (KT + Pa,, + by + K9}

— K*¥*q,, (&)
Proof: See Appendix A. [
As in the case of rigid multibody systems,!? the direct recur-

sive implementation of Eq. (57) leads to the following recur-
sive forward dynamics algorithm:

2+ (0 =0
fork=1,...,N
z(k) =¥k, k — D)z +(k - 1) + P(k)a (k) + b (k)
+ K (k)9(k)
(k) = T(k) — 3C(k)z(k)
(k) = D ~'(k)e(k)
z+(k) =z(k) + G(k)e(k)

end loop (58)
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an(N+1)=0
for k=N,...,1
af, (k) = ®*(k +1,Kk)ctm (k + 1)
x(k) = v(k) — G*(k)a,, (k)
am(k) = ag, (k) + I (K)X(Kk) + am(k)
end loop

The structure of this algorithm is closely related to the struc-
ture of the well-known Kalman filtering and smoothing algo-
rithms.® All of the degrees of freedom for each body [as char-
acterized by the joint map matrix JC*(.)] are processed
together at each recursion step in this algorithm. However, by
taking advantage of the sparsity and special structure of the
joint map matrix, additional reduction in computational cost
is obtained by processing the flexible degrees of freedom and
the hinge degrees of freedom separately. These simplifications
are described in the following sections.

A. Simplified Algorithm for the Articulated-Body Quantities

Instead of a detailed derivation, we describe here the con-
ceptual basis for the separation of the modal and hinge degrees
of freedom for each body. First we recall the velocity recursion
equation in Eq. (11)

Vi (k) = ®*(k + 1,k)V,,(k + 1) + 3*(k)x(k) 59
and the partitioned form of JC(k) in Eq. (13)

C‘Cf(k)] 60)
J3C,. (k)

(k) = [
Introducing a dummy variable k’, we can rewrite Eq. (59) as
Viu(k') = ®*(k + 1,k YVp(k + 1) + ICHK)7(K)
Vi (k) = ®*(k',k)V,, (k') + JCH(K)B(k) (61)
where

Sk +1,k)3®(k+1,k) and  Bkik)ET

Conceptually, each flexible body is now associated with two
new bodies. The first one has the same kinematical and mass/
inertia properties as the real body and has the flexible degrees

I(k) = ¢(1x,k = DPg (k = Do*(ty,k — 1),

of freedom. The second body is a fictitious body that is mass-
less and has zero extent. It is associated with the hinge degrees
of freedom. The serial chain now contains twice the number of
bodies as the original one with half of the new bodies being
fictitious ones. The new JC* operator now has the same num-
ber of columns but twice the number of rows as the original
JC* operator. The new ® operator has twice as many rows and
columns as the original one. Repeating the analysis described
in the preceding sections, we once again obtain the same oper-
ator expression as Eq. (57). This expression also leads to a
recursive forward dynamics algorithm as in Eq. (58). How-
ever, each sweep in the algorithm now contains twice as many
steps as the original algorithm. But since each step now pro-
cesses only a smaller number of degrees of freedom, this leads
to areduction in the overall cost. The new algorithm [replacing
Eq. (51)] for computing the articulated body quantities is as
follows:

Pr*(0)=0
fork=1,...,N

T(k) = Bk, k — )P *(k — DR*(k, k — 1) € REXS
P(k) = QUK)T(K)Q*(k) + M, (k) € RTK*RD
Dy(k) = 3¢ (k)P (k)IC}(k) € Rnm > nm(®)
G(k) = P(k)3C}(k)D; ' (k) € RF0xnmm®

7(k) = I — GH(k)3C (k) € RN XTk)
P, (k) = 7(k)P(k) € RTKxTK)

D, (k)= 3C.(k)P,(k)IC} (k) € R Bxnrio
G, (k)= P,(k)3C:(k)D; ' (k) € ®RIOURxnr)
(k=T — G(k)IC,(k) € RIO=IUK)
P*(k) = 7,(k)P,(k) € RIWD>Tk
W(k +1,k) = ®(k + 1,k)7(k) € RTKxTo)

end loop (62)

We now use the sparsity of 8(k +1,k), 3Cs(k), and JC, (k) to
further simplify the preceding algorithm. Using the symbol
‘x>’ to indicate ‘‘don’t care’’ blocks, the structure in block
partitioned form of some of the quantities in Eq. (62) is given
below:

[Pg (k) is defined below]

Gf(k)=<g(xk)> where  g(k) = w(k)D; '(k) € R W, (k) A [PU(k), P(k)|3CH(k) € RExmm®

where Gr(k) 2 Pr(kYH3(k)D ' (k) € ®E*mrh)

— X X _ rr, _ % 6x6
P.(k)= <x PR(k)> where Pr(k)=P"(k) — g(k)u*(k) € ®
D, (k) = Hs(k)Pr(k)H3 (k) € R O>n®
G, (k) = ( X )

T \Gr(k)

7(k) = <I X > where 7r(k) =1 — Gr(k)Hg(k) € RS

0 7r(k)

p-(t
=\« Pg (k)

> where Pj (k) =7r(k)Pgr(k) € RS*®
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Using the structure just described, the simplified algorithm for
computing the articulated body quantities is as follows:

PE©0)=0
fork=1,...,N
T(k) = ¢(tr,k — DPZ (k — Dop*(ty,k—1)
P(k) = QUKT(k)@*(k) + M, (k)
Dy(k) = 3¢,(k)P(k)3C} (k)
uk) = [P(k), P(k)]3C} (k)
g(k) = u(k)Dj ' (k)
Pr(k) = P(k) — g (k)u*(k)
Dr (k) = Hs(k)Pr(k)H3 (k)
Gr(k) = Pr(k)H5(k)D ' (k)
7r(k) = I — Gp(k)Hs(k)
P (k) = 7r (k)P (k)
end loop (63)

B. Simplified Articulated-Body Forward Dynamics Algorithm

The complete recursive articulated-body forward dynamics
algorithm for a serial flexible multibody system follows di-
rectly from the recursive implementation of the expression in
Eq. (57). The algorithm consists of the following steps: 1) a
base-to-tip recursion as in Eq. (45) for computing the modal
spatial velocities V,, (k) and the Coriolis and gyroscopic terms
an(k) and b,,(k) for all of the bodies; 2) computation of the
articulated body quantities using Eqs. (B4) and (63); and 3) a
tip-to-base recursion followed by a base-to-tip recursion for
the joint accelerations x as described below:

25 (0)=0

fork=1,...,N

B zf(k)>
k)= <z,<k)

= @kt k ~ Dz (k — 1) + b(k)
+ K (k)d(k) € ®R%5
er(k) = Ty(k) — zp(k) + [TI§(k)] *z,(k) € ®R™m B
vi(k) =D (k)e, (k) € Rrmb
zr(k) = z,(k) + g(k)es(k) + Pr(k)anr(k) € RS
er(k) = Tr(k) — Hs(k)zg(k) € Rrr®)
vr(k) = Dg'(k)er(k) € R
2 (k) = 2r(k) + Gr(k)er(k) € R
end loop (64)
am(N+1)=0
fork=N,...,1
ap (k) = ¢*(txs1, k)@ (kK + Doy (k +1) € RS
B(k) = vr(k) — GE(K)ag (k) € R ®
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ar(k) = af (k) + HF(K)B(K) + amp (k) € RS
(k) = v (k) — g*(K)ar(k) € R™mB

(k)

(Rﬁ(k)
aR(k)—Hg(k)ﬁ(kJ ¢

(k) = [

end loop

The recursion in Eq. (64) is obtained by simplifying the recur-
sions in Eq. (58) in the same manner as described in Sec. VI.A.

In contrast with the composite-body forward dynamics
algorithm described in Sec. 1V, the articulated-body forward
dynamics algorithm does not require the explicit computation
of either 9 or C. The structure of this articulated-body algo-
rithm closely resembles the recursive articulated-body forward
dynamics algorithm for rigid multibody systems described in
the literature. '3

The articulated-body forward dynamics algorithm has been
used to develop a dynamics simulation software package
(called DARTS) for the high-speed, real-time, hardware-in-
the-loop simulation of planetary spacecraft. Validation of the
DARTS software was carried out by comparing simulation
results with those from a standard, flexible, multibody simula-
tion package.® The results from the two independent simula-
tions have shown complete agreement.

VII. Computational Cost

This section discusses the computational cost of the compos-
ite-body and the articulated-body forward dynamics algo-
rithms. For low-spin multibody systems, it has been suggested
in Ref. 16 that using ruthlessly linearized models for each flex-
ible body can lead to significant computational reduction with-
out sacrificing fidelity. These linearized models are consider-
ably less complex and do not require much of the modal
integral data for the individual flexible bodies. All computa-
tional costs given below are based on the use of ruthlessly
linearized models and the computationally simplified steps de-
scribed in Appendix B. _

Flexible multibody systems typically involve both rigid and
flexible bodies and, in addition, different sets of modes are
used to model the flexibility of each body. As a consequence,
where possible, we describe the contribution of a typical
(nonextremal) flexible body, denoted the kth body, to the
overall computational cost. Note that the computational cost
for extremal bodies as well as for rigid bodies is lower than that
for a nonextremal flexible body. Summing up this cost for all
the bodies in the system gives a figure close to the true compu-
tational cost for the algorithm. Without any loss in generality,
we have assumed here that all of the hinges are single-degree-
of-freedom rotary joints and that free-free assumed modes are
being used. The computational costs are given in the form of
polynomial expressions for the number of floating point oper-
ations, with the symbol M denoting multiplications and A
denoting additions.

A. Computational Cost of the Composite-Body Forward Dynamics
Algorithm

The composite-body forward dynamics algorithm described
in Sec. IV is based on solving the linear matrix equation

Mx=T-0C
The computational cost of this forward dynamics algorithm is
given below:

1) Cost of computing R (k) for the kth body using the algo-
rithm in Eq. (50) is

[487,, (k) +90| M + [N},,(k)+ % nm(k)+ 116}4
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Fig. 2 Comparison of the computational cost in floating point oper-
ations for the articulated- and composite-body forward dynamics
algorithms for serial-chain multibody systems with 10 flexible bodies.

2) Contribution of the kth body to the cost of computing
M [excluding cost of R (k)] using the algorithm in Eq. (50) is

{k[12n2(6)+ 38n, (k) + 13} M

+ (ke [11n2,00) +24m, (k) +13]} 4

3) Setting the generalized accelerations x =0, the vector C
can be obtained by using the inverse dynamics algorithm de-
scribed in Eq. (45) for computing the generalized forces 7. The
contribution of the kth body to the computational cost for
C(k) is

{2n2,0) 541, (k) +206]M + [2n2(k) + 50n,,(k) + 143) A

4) The cost of computing 7—C is {I}A.
5) The cost of solving the linear equation in Eq. (46) for the
accelerations x is

1 3
_m3+_
E

The overall complexity of the composite-body forward dy-
namics algorithm is O(913).

2 1
mZ—Em}M+ &91%912—%91},4

B. Computational Cost of the Articulated-Body Forward Dynamics
Algorithm

The articulated-body forward dynamics algorithm is based
on the recursions described in Egs. (B4), (63), and (64). Since
the computations in Eq. (B4) can be carried out prior to the
dynamics simulation, the cost of this recursion is not included
in the cost of the overall forward dynamics algorithm de-
scribed below:

1) The a_lgorithm for the computation of the articulated
body quantities is given in Eq. (63). The step involving the
computation of D/ (k) can be carried out gither by an explicit
inversion of D/(k) with Ol[n}, (k)] cost, or by the indirect
procedure described in Eq. (B3) with O[#n2 (k)] cost. The first
method is more efficient than the second one for n,(k)<7.

a) Cost of Eq. (63) for the kth body based on the explicit
inversion of D(k) [used when n,,(k)=<7] is

((5/6)n3, (k) +(25/2)n2, (k) + (764/3)n,, (k) + 180] M
+ {(5/6)n3, (k) + (21/2)n2 (k) + (548/3)n,, (k) + 164] A

b) Cost of Eq. (63) for the kth body based on the indirect
computation of Df‘l(k) [used when n,,(k)=8] is

{122, (k) +255nm (k) + 572} M

+ {13n2,(k)+182n,,(k) + 445} A

2) The cost for the tip-to-base recursion sweep in Eq. (64)
for the kth body is

(n2(k)+ 251, (k) +49)M + (nk(k)+24n,,(k)+50}4

3) The cost for the base-to-tip recursion sweep in Eq. (64)
for the kth body is

{187, (k) +52}M + {190, (k) +42} A

The overall complexity of this algorithm is O(Nr2), where n,,
is an upper bound on the number of modes per body in the
system.

From a comparison of the computational costs, it is clear
that the articulated-body algorithm is more efficient than the
composite-body algorithm as the number modes and bodies in
the multibody system increases. Figure 2 contains a plot of the
computational cost (in floating point operations) of the com-
posite-body and the articulated-body forward dynamics algo-
rithms vs the number of assumed-modes per body for a serial
chain with 10 flexible bodies. The articulated-body algorithm
is faster by over a factor of 3 for 5 modes per body, and by
over a factor of 7 for the case of 10 modes per body. The
divergence between the costs for the two algorithms becomes
even more rapid as the number of bodies is increased.

VIII. Extensions to General Topology
Flexible Multibody Systems

For rigid multibody systems, Ref. 11 describes the exten-
sions to the dynamics formulation and the algorithms that are
required as the toplogy of the system goes from a serial chain
topology, to a tree topology, and finally to a closed-chain
topology system. The key to this progression is the invariance
of the operator description of the system dynamics to increases
in the topological complexity of the system. Indeed, as seen
here, the operator description of the dynamics remains the
same even when the multibody system contains flexible rather
than rigid component bodies. Thus, using the approach in
Ref. 11 for rigid multibody systems, the dynamics formulation
and algorithms for flexible multibody systems with serial to-
pology can be extended in a straightforward manner to systems
with tree or closed-chain topology. Based on these observa-
tions, extending the serial chain dynamics algorithms de-
scribed in this paper to tree topology flexible multibody sys-
tems requires the following steps:

1) For each outward sweep involving a base-to-tip(s) recur-
sion, at each body, the outward recursion must be continued
along each outgoing branch emanating from the current body.

2) For each inward sweep involving a tip(s)-to-base recur-
sion, at each body, the recursion must be continued inward
only after summing up contributions from each of the other
incoming branches for the body.

A closed-chain topology flexible multibody system can be
regarded as a tree topology system with additional closure
constraints. As described in Ref. 11, the dynamics algorithm
for closed-chain systems consists of recursions involving the
dynamics of the tree topology system, and in addition the
computation of the closure constraint forces. The computa-
tion of the constraint forces requires the effective inertia of the
tree topology system reflected to the points of closure. The
algorithm for closed-chain flexible multibody systems for
computing these inertias is identical in form to the recursive
algorithm described in Ref. 11.

IX. Conclusions

This paper uses spatial operator methods to develop a new
dynamics formulation for flexible multibody systems. A key
feature of the formulation is that the operator description of
the flexible system dynamics is identical in form to the cor-
responding operator description of the dynamics of rigid
multibody systems. A significant advantage of this unifying
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approach is that it allows ideas and techniques for rigid multi-
body systems to be easily applied to flexible multibody sys-
tems. The Newton-Euler operator factorization of the mass
matrix forms the basis for recursive algorithms such as those
for the inverse dynamics, the computation of the mass matrix,
and the composite-body forward dynamics algorithm for the
flexible multibody system. Subsequently, we develop the artic-
ulated-body forward dynamics algorithm, which, in contrast
to the composite-body forward dynamics algorithm, does not
require the explicit computation of the mass matrix. While the
computational cost of the algorithms depends on factors such
as the topology and the amount of flexibility in the multibody
system; in general, the articulated-body forward dynamics
algorithm is by far the more efficient algorithm for flexible
multibody systems containing even a small number of flexible
bodies. All of the algorithms are closely related to those en-
countered in the domain of Kalman filtering and smoothing.
Whereas the major focus in this paper is on flexible multibody
systems with serial chain topology, the extensions to tree and
closed-chain topologies are straightforward and are described
as well.

Appendix A: Proofs of the Lemmas

At the operator level, the proofs of the lemmas in this paper
are completely analogous to those for rigid multibody sys-
tems.!?

Proof of Lemma 1
Using operators, we can rewrite Eq. (47) in the form

M, =R - &3RE} (A1)
From Eq. (19) it follows that ®&4= 8% = & — I = $. Multiply-
ing Eq. (Al) from the left and right by ® and $* respectively
leads to
OM,, * = PRP* — PEZRE;D*
=(@+DHR(@+I)* —®R®* =R + $R + R&*

Proof of Lemma 2

It is easy to verify that 7P7*=7P. As a consequence, the
recursion for P(.) in Eq. (51) can be rewritten in the form

M, =P —84P8% =P —8,P8;=P — §,P8% + KDK*
(A2)

Pre- and post-multiplying Eq. (A2) by ® and $* then leads to

&M, d* = P + $P + P®* + BKDK*d*

Hence,
=9 = JCOM,, ®*JC* = 3C[P + &P + P¥* + ®BKDK *d*]3C*
=D + 3CPKD + DK*®*3C* + JCPKDK*P*JC*
= [I+3PK]D[I +HEK]*

Proof of Lemma 3
Using a standard matrix identity, we have that

[IT+3PK] =1 P[] +KId] 'K (A3)
Note that
T 1l=]-8,=(I-8)+8;GH =%+ K3 (Ad)
from which it follows that

¥-1d=7+ KD

Using this with Eq. (A3), it follows that

[J+3CPK]" ' =1 - B[V~ 18] 'K =T — JC¥K

Proof of Lemma 5

From Egs. (42) and (43), the expression for the generalized
accelerations x is given by

X =M N(T-C)
= [[-X¥YK*D~'[I -3C¥K]
X [T = 3B[Mp®*ap + by + K S]] (AS)
From Eq. (A4) we have that
[7—-3C¥K]ICD = JC¥[¥~1-kIC)P =¥ (A6)
Thus Eq. (AS5) can be written as

X = [I~3C¥K]*D [T - CY[KT + M, ®*ap, + by + Kyl
(AT)

From Eq. (A2) it follows that
M, =P -8yP&; = ¥M,d*=V¥P+Pd  (AB)
and so Eq. (A7) simplifies to
X =[I—3C¥K]*D [T — Y [KT + Pap, + by + Ky 9
~3CP%*a,) (A9)
From Eq. (A4) we have that
[/ —3C¥K]*D ~13CPE* = [I - ICYKI*K*d*
= K*U*[¥—* — KJC]*®* = K*¥* (A10)

Using this in Eq. (A9} leads to the result.

Appendix B: Ruthless Linearization
of Flexible Body Dynamics

It has been pointed out in recent literature!é-!? that the use of
modes for modeling body flexibility leads to ‘‘premature lin-
earization”’ of the dynamics in the sense that, while the dy-
namics model contains deformation-dependent terms, the geo-
metric stiffening terms are missing. These missing geometric
stiffening terms are the dominant terms among the first-order
(deformation) dependent terms. In general, it is necessary to
take additional steps to recover the missing geometric stiffness
terms to obtain a ‘‘consistently’’ linearized model with the
proper degree of fidelity. )

However for systems with low spin rate, there is typically
little loss in model fidelity when the deformation- and defor-
mation rate-dependent terms are dropped altogether from the
dynamical equations of motion.'® Such models have been
dubbed the ““ruthlessly linearized models.”” These linearized
models are considerably less complex and do not require
most of the modal integrals data for each individual flexible
body. In this model, the approximations to M,,(k), a,,(k),
and b,,(k) are as follows:

by (k)=b3 (k)
(B1)

0
M, (k) =My, (k), a'”(k)z[a"R(k)}’

With this approximation, M, (k) is constant in the body
frame, whereas a,,(k) and b, (k) are independent of n(k)
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and 7(k). With this being the case, the formation of D; ! in
Eq. (63) can be simplified. Using the matrix identity

[A +BCB*]"'1=A-1-A-'B[C~'+B*A~'B]~'B*A~!
(B2)

which holds for general matrices A, B, and C, it is easy to
verify that

D7 (k)= ACk)—"T(k)[T~1(k)+ Q)] (k)T*(k)  (B3)

where the matrices A(k), Q(k), and T(k) are precomputed just
once prior to the dynamical simulation as follows:

fork=1,...,N
A(k) = [3C k)M, (K)ICH(K)] € R
(k) =3C,(k)Q(k) € RIS
T(k) = A(k)§(k) € R™*E
(k) = P(k)T(k) € RS

end loop (B4)

The use of Eq. (B3) reduces the computational cost for com-
puting the articulated-body inertias to a quadratic rather than
a cubic function of the number of modes.
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