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Recursive Flexible Multibody System Dynamics
Using Spatial Operators

A. Jain and G. Rodriguez
Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109

This paper uses spatial operators to develop new spatially recursive dynamics algorithms for flexible multibody
systems. The operator description of the dynamics is identical to that for rigid multibody systems. Assumed-
mode models are used for the deformation of each individual body. The algorithms are based on two spatial
operator factorizations of the system mass matrix. The first (Newton-Euler) factorization of the mass matrix
leads to recursive algorithms for the inverse dynamics, mass matrix evaluation, and composite-body forward
dynamics for the system. The second (innovations) factorization of the mass matrix, leads to an operator
expression for the mass matrix inverse and to a recursive articulated-body forward dynamics algorithm. The
primary focus is on serial chains, but extensions to general topologies are also described. A comparison of
computational costs shows that the articulated-body, forward dynamics algorithm is much more efficient than
the composite-body algorithm for most flexible multibody systems.

Nomenclature*
General Quantities
co\[x(k)} = column vector whose A:th element is x(k)
diag{*(/:)) = block diagonal matrix whose kth diagonal

element is x(k)
l(x,y) = vector from point/frame x to point/frame y,

<E(R 3

x = [ x ] x € (R3x3; skew-symmetric cross-product
matrix associated with the three-dimensional
vector x

x = dx/dt', time derivative of x with respect to an
inertial frame

x = time derivative of x with respect to the
body-fixed (rotating) frame

<Kx,y) <E (R6X6./ Rx,y)\
O / J

spatial transformation operator that
transforms spatial velocities and forces
between points/frames x and y

Individual Body Nodal Data
$k = body reference frame with respect to which

the deformation field for the A:th body is
measured; the motion of this frame
characterizes the motion of the kth body as a
rigid body

jk = jth node on the A:th body
Ks(k) = structural stiffness matrix for the kth body,
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* Coordinate-free spatial notation1'2 is used in this paper. A spatial velocity of a frame is a six-dimensional quantity whose upper three elements
are the angular velocity and whose lower three elements are the linear velocity. A spatial force is a six-dimensional quantity whose upper three
elements are a moment vector and whose lower three elements are a force vector.

A variety of indices are used to identify different spatial quantities. Some examples are as follows: Vs(jk), the spatial velocity of theyth node
on the A:th body; Vs(k) = col( Vs(jk)}, the composite vector of spatial velocities of all the nodes on the A:th body; Vs =col{ V s ( k ) } , the vector of
spatial velocities of all the nodes for all the bodies in the serial chain. The index k is used to refer to both the kth body as well as the A:th body
reference frame 5^, with the usage being apparent from the context. Some key quantities are defined in the Nomenclature (see also Fig. 1).
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l(kjk)

lo(kjk)

vector from 5> to the location (after
deformation) of the j th node reference frame
on the kth body, lo(kjk) + d{(jk) € (R3

vector from 5^ to the location (before
deformation) of the j th node reference frame
on the A:th body, € (R3

Ms(k)

m(jk)
ns(k)
p(jk)

spatial inertia about the nodal reference frame
for the y'th node on the A:th body
structural mass matrix for the A:th body,
diag{M5t/*)| € (R6«*(*)x6n,(*)
mass of they'th node on the A:th body
number of nodes on the A:th body
vector from the nodal reference frame to the
node center of mass for the j th node on the
kth body, £ (R3

inertia tensor about the nodal reference frame
for they'th node on the Arth body, €(R 3 x 3

spatial displacement of nodey^; the
translational component of u(jk) is d{(jk),
whereas its time derivative with respect to
the body frame 5> is

~
di(jk) translational deformation of the y th node on

the kth body, € (R3

deformation linear velocity of they'th node on
the A:th body with respect to the body frame

deformation angular velocity of they'th node
on the kth body with respect to the body
frame 9>, 6(R3

Individual Body Modal Data
Km(k) = modal stiffness matrix for the kth body,

Mm(k)

~y[(k)

nm(k)
^(£)

U(k)

= modal mass matrix for the A:th body,

nm(k) + 6\ number of deformation plus
rigid-body degrees of freedom for the kth
body
number of assumed modes for the Arth body
vector of modal deformation variables for the
Arthbody, €(R /I '"(A:)

co\(Uj(k)} <E (5{6ns(k)x6nm(k). the modal matrix
for the kth body [The rth column of U(k) is
denoted Ur(k) £ (R671***) and is the mode shape
function for the rth assumed mode for the
A:th body; the deformation field for the A:th
body is given by u(k) = U(k)rj(k), whereas

UJ(k)

UJ
r(k)

[U{(k)> . . . ,niw(jt)] € (R6xnm(k). modal spatial
influence vector for the y'th node [The spatial
deformation of node jk is given by

modal spatial displacement vector for the rth
mode at the y'^th nodal reference frame, € (R6

Multibody Data

am(k)

B(k)

relates spatial forces and velocities between
node tk and frame $k
modal Coriolis and centrifugal accelerations
for the kth body,

relates the spatial velocity of frame 5> to the
spatial velocities of all of the nodes on the

bm(k)

kth body when the body is regarded as being
rigid

l,'k) = [0, 0(^+i, £)] € (R6x9l^>; relates spatial
forces and velocities between node tk+ \
and frame $k

= modal gyroscopic forces for the A:th body,

C(k,k-l) =

e
dk

f(k)
fm(k)

fs(Jk)

H*(k)

an:
TV

91

nr(k)

T(k)

V(k)

Vm(k}

Vs(jk)

am(k)

0

0
vector of Coriolis, centrifugal, and elastic
forces for the multibody system, € (R91

: node on the Arth body to which the A:th hinge
is attached

: effective spatial force at frame 5>, € (R6

= modal spatial force of interaction between the
A:th and (A: + l)th bodies, 6 (RW)

= spatial force at node jk, € (R6

= H(k)(t>(0k,k) € (R«^(^)><6; joint map matrix
referred to frame 5> for the A:th hinge

= joint map matrix for the A:th hinge;
[We have that Av(k) = H*(k)/3(k).]

(deformation plus hinge) modal joint map
matrix for the kth body

= multibody system mass matrix, €(RDlxDI

= number of bodies in the serial flexible
multibody system

= D^=19l(/r); overall deformation plus hinge
degrees of freedom for the serial chain

= nm(k) + nr(k)\ number of deformation plus
hinge_degrees of freedom for the &th body

= E^=19l(/:); overall degrees of freedom in the
serial chain obtained by disregarding the
hinge constraints

= number of degrees of freedom for the A:th
hinge

= reference frame for the A:th hinge on the A:th
body; this frame is fixed to node dk

-- reference frame for the kth hinge on the
(k + l)th body; this frame is fixed to node
tk+l

-- generalized force for the A:th body, € (R9l(/:)

= node on the A:th body to which the (A: - l)th
hinge is attached

spatial velocity of the A:th body reference
frame 3>, with a(k) and v(k) denoting the
angular and linear velocities respectively of
frame 5>

= spatial velocity of frame Ok9 € (R6

= spatial velocity of frame Qk9 € (R6

modal spatial velocity of the A:th body
= spatial velocity of the y'th node on the Arth
body, 6 (R6_

= Vm(k) € (R91^); modal spatial acceleration of
the A:th body

= spatial acceleration of the y'th node on the Arth
body, € (R6

= vector of generalized velocities for the A:th
hinge, € (RM/:)
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6(k)

€ (R6;

relative spatial velocity for the kih hinge
defined as the spatial velocity of frame 0^
with respect to frame 0^
vector of configuration variables for the kth
hinge, €<Rnr (Ar )

![ ^

interbody transformation operator that relates
modal spatial forces and velocities between
the kth and (k + l)th bodies

vector of (deformation plus hinge) generalized
velocities for the A:th body

vector of (deformation plus hinge) generalized
configuration variables for the kth body

I. Introduction

T HIS paper uses spatial operators1'2 to formulate dynamics
and develop efficient recursive algorithms for flexible

multibody systems. Flexible spacecraft, limber space manipu-
lators, and vehicles are important examples of flexible multi-
body systems. Key features of these systems are the large num-
ber of degrees of freedom and the complexity of their
dynamics models.

The main contributions of the paper are 1) providing a
high-level architectural understanding of the structure of the
mass matrix and its inverse; 2) showing that the high-level
expressions can be easily implemented within the very well
understood Kalman filtering and smoothing architecture;
3) developing very efficient inverse and forward dynamics
recursive algorithms; and 4) analyzing the computational cost
of the new algorithms. These contributions add to the rapidly
developing body of research in the recursive dynamics of flex-
ible multibody systems.3"5

It is assumed that the bodies undergo small deformations so
that a linear model for elasticity can be used. However, large
articulation at the hinges is allowed. No special assumptions
are made regarding the geometry of the component bodies. To
maximize applicability, the algorithms developed here use
finite element and/or assumed-mode models for body flexibil-
ity. For notational simplicity, and without any loss in gen-
erality, the main focus of this paper is on flexible multibody
serial chains. Extensions to tree and closed-chain topologies
are discussed.

In Sec. II we derive the equations of motion and recursive
relationships for the modal velocities, modal accelerations,
and modal forces. This section also contains a derivation of
the Newton-Euler operator factorization of the system mass
matrix. A recursive Newton-Euler inverse dynamics algorithm
to compute the vector of generalized forces corresponding to
a given state and vector of generalized accelerations is de-
scribed in Sec. III.

In Sec. IV, the Newton-Euler factorization of the mass ma-
trix is used to develop a partly recursive composite-body for-
ward dynamics algorithm for computing the generalized accel-
erations of the system. The recursive part is for computing the
multibody system mass matrix. This forward dynamics algo-
rithm is in the vein of well-established approaches6'7 that re-
quire the explicit computation and inversion of the system
mass matrix. However, the new algorithm is more efficient
because the mass matrix is computed recursively and be-
cause the detailed recursive computations follow the high-

level architecture (i.e., roadmap) provided by the Newton-
Euler factorization.

In Sec. V we derive new operator factorization and inversion
results for the mass matrix that lead to the recursive articu-
lated-body forward dynamics algorithm. A new mass matrix
operator factorization, referred to as the "innovations" fac-
torization, is developed. The individual factors in the innova-
tions factorization are square and invertible operators. This is
in contrast to the Newton-Euler factorization in which the
factors are not square and therefore not invertible. The inno-
vations factorization leads to an operator expression for the
inverse of the mass matrix. Based on this expression, in Sec. VI
we develop the recursive articulated-body forward dynamics
algorithm for the multibody system. This algorithm is an alter-
native to the composite-body forward dynamics algorithm and
requires neither the explicit formation of the system mass ma-
trix nor its inversion. The structure of this recursive algorithm
closely resembles those found in the domain of Kalman filter-
ing and smoothing.8

In Sec. VII we compare the computational costs for the two
forward dynamics algorithms. It is shown that the articulated-
body forward dynamics algorithm is much more efficient than
the composite-body forward dynamics algorithm for typical
flexible multibody systems. In Sec. VIII we discuss the exten-
sions of the formulation and algorithms in this paper to tree
and closed-chain topology multibody systems.

II. Equations of Motion for Flexible Serial Chains
In this section, we develop the equations of motion for a

serial, flexible, multibody system with N flexible bodies. Each
flexible body is assumed to have a lumped mass model consist-
ing of a collection of nodal rigid bodies. Such models are
typically developed using standard finite element structural
analysis software. The number of nodes on the A:th body is
denoted ns(k). They'th node on the kih body is referred to as
theyVth node. Each body has associated with it a body refer-
ence frame, denoted 5> for the A:th body. The deformations of
the nodes on the body are described with respect to this body
reference frame, whereas the rigid body motion of the kth
body is characterized by the motion of frame 5>.

The six-dimensional spatial deformation (slope plus trans-
lational) of node jk (with respect to frame 3>) is denoted
u(Jk) € <ft6- The overall deformation field for the kth body is
defined as the vector

= col{u(jk)} 6ns (k)

The vector from frame 5> to the reference frame on node jk is
denoted l(kjk) € (R3.

With Ms(jk) € (R6x6 denoting the spatial inertia of they'th
node, the structural mass matrix for the A:th body Ms(k) is the
block diagonal matrix

diag{M5(A)) € <R6M*)x6n,<*)

The structural stiffness matrix is denoted

Both Ms(k) and Ks(k) are typically generated using finite
element analysis.

As shown in Fig. 1, the bodies in the serial chain are num-
bered in increasing order from tip to base. We use the termi-
nology inboard (outboard) to denote the direction along the
serial chain toward (away from) the base body. The A:th body
is attached on the inboard side to the (k + l)th body via the
kih hinge and on the outboard side to the (k - l)th body
via the (k - l)th hinge. On the kth body, the node to which
the outboard hinge [the (k - l)th hinge] is attached is referred
to as node tk9 whereas the node to which the inboard hinge
(the kth hinge) is attached is denoted node dk. Thus the A:th
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(k-l)th hinge

Towards base •« ———————— ——————— *• Towards tip

Fig. 1 Links and hinges in a flexible serial multibody system.

hinge couples together nodes dk and tk+\. Attached to each of
these pairs of adjoining nodes are the kt\\ hinge reference
frames denoted 0^ and Of , respectively. The number of de-
grees of freedom for the kth hinge is denoted nr(k). The
vector of configuration variables for the A:th hinge is denoted
0(k) € (Rnr^k\ whereas its vector of generalized speeds is de-
noted /3(k) € (&nr(k\ In general, when there are nonholonomic
hinge constraints, the dimensionality of 0(k) may be less than
that of 6(k). For notational convenience, and without any loss
in generality, it is assumed here that the dimensions of the
vectors 6(k) and /3(k) are equal. In most situations, /3(k) is
simply 6. However, there are many cases where the use of
quasicoordinates simplifies the dynamical equations of motion
and an alternative choice for &(k) may be preferable. The
relative spatial velocity AK(&) across the hinge is given by
H*(k){3(k), where H*(k) denotes the joint map matrix for the
kth hinge.

Assumed modes typically are used to represent the deforma-
tion of flexible bodies, and there is a large body of literature
dealing with their proper selection. There is however a close
relationship between the choice of a body reference frame and
the type of assumed modes. The complete motion of the flex-
ible body is contained in the knowledge of the motion of the
body reference frame and the deformation of the body as seen
from this body frame. In the multibody context, it is often
convenient to choose the location of the A:th body reference
frame 5> as a material point on the body and fixed to node dk
at the inboard hinge. For this choice, the assumed modes are
cantilever modes and node dk exhibits zero deformation
[u(dk) = 0]. Free-free modes are also used to represent body
deformation and are often preferred for control analysis and
design. For these modes, the reference frame 3> is not fixed to
any node but is rather assumed to be fixed to the undeformed
body, and as a result all nodes exhibit nonzero deformation.
The dynamics modeling and algorithms developed here handle
both types of modes, with some additional computational
simplifications arising from Eq. (1) when cantilever modes
are used. For a related discussion regarding the choice of refer-
ence frame and modal representations for a flexible body see
Ref. 9.

We assume here that a set of nm(k) assumed modes has
been chosen for the A:th body. Let n/(&) € (R6 denote the
modal spatial displacement vector at the jkth node for the
rth mode. The modal spatial displacement influence vector
Uj(k) € (R6xnmW for the jkth node and the modal matrix
U(k) € (R6*<*)x /M*) for the kth body are defined as follows:

= [!!«*), • • • ,nim and IL(k) = col(lF'(*)}

The rth column of !!(/:) is denoted Ur(k) and defines the
mode shape for the rth assumed mode for the kth body. Note
that for cantilever modes we have

for (1)

With rj(k) € (RnmW denoting the vector of modal deformation
variables for the kth body, the spatial deformation of node

jk and the spatial deformation field u(k) for the A:th body are
given by

a(A) = and u(k) = (2)

The vector of generalized configuration variables d(k) and
generalized speeds \(k) for the kth body are defined as

A rA (3)

where ^l(k) = nm(k) + nr(k). The overall vectors of general-
ized configuration variables & and generalized speeds x for the
serial multibody system are given by

4 col[&(k)] € (R91 and (4)

where

denotes the overall number of degrees of freedom for the
multibody system. The state of the multibody system is defined
by the pair of vectors { $,x ) • For a given system state { $,x ) ,
the equations of motion define the relationship between the
vector of generalized accelerations x and the vector of general-
ized forces T € (R91 for the system. The inverse dynamics prob-
lem consists of computing the vector of generalized forces T
for a prescribed set of generalized accelerations x- The forward
dynamics problem is the converse one and consists of comput-
ing the set of generalized accelerations x resulting from a set of
generalized forces T. The equations of motion for the system
are developed in the remainder of this section.

A. Recursive Propagation of Velocities
Let V(k) € (R6 denote the spatial velocity of the kth body

reference frame 5>. The spatial velocity Vs(tk+ 1) € (R6 of node
tk+\ (on the inboard of the kth hinge) is related to the spatial
velocity V(k + 1) of the (k + l)th body reference frame 5>+ 1 ,
and the modal deformation variable rates i](k + 1) as follows:

(5)

The aforementioned spatial transformation operator <f)(x,y)
€ (R6x6 is defined to be

<t>(x,y) = T(x,y)
0 (6)

where l(x,y) € (R3 denotes the vector between the points x
and y. Note that the following important (group) property
holds for arbitrary points x, y, and z •

As in Eq. (5), and all through this paper, the index k will be
used to refer to both the kth body as well as to the A:th body
reference frame 5> with the specific usage being evident from
the context. Thus, for instance, V(k) and 4>(k,tk) are the same
as F(5>) and </>($>, ̂ )» respectively.

The spatial velocity V(Qk ) of frame 0^ (on the inboard side
of the kth hinge) is related to Vs(tk+i) via

(7)
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Since the relative spatial velocity AF(A:) across the A:th hinge is
given by H*(k)(3(k), the spatial velocity V(Qk) of frame Qk on
the outboard side of the kth hinge is

K(0*)=K(0j£) (8)

The spatial velocity V(k) of the kih body reference frame is
given by

V(k) = <l>*(Ok,k)[V(Ok)-u(dk)]

= 4>*(Qk9k)[V(Ok)-Ud(k)ii(k)\ (9)

Putting together Eqs. (5) and (7-9), it follows that

V(k) = </>*(£ + 1, k)V(k + 1) + <t>*(tk+1,k)U'(k + l)ii(k + 1)

Thus with !$i(k) = nm{k) + 6, and using Eq. (10), the modal
spatial velocity Vm(k) € (R3l(A:) for the kth body is given by

(11)

where the interbody transformation operator $(.,.) and the
modal joint map matrix 3C(A:) are defined as

(12)

(13)
d(k\\*

where

0 /fg:(A:)

4 H(k)<t>(Qk,k)

Note that

where

(14)

1,^)4 [0, 0(^+i, ̂ )] € (R6xWO (15)

Also, the modal joint map matrix JC(/:) can be partitioned as

(16)

where

Cr(A:) ^ [0, Hs(k)<l>(Qk,k)\ € (R"r

With
N

k=l

we define the spatial operator £$ as

0
$(2,1)

0

0

0 0
0

$(3,2) ...

o ... 4

0
0
0

>(7V,7V-1)

0
0
0

0 (18)

Using the fact that 8$ is nilpotent (i.e., S£=0), we define the
spatial operator $ as

/

$(2,1)

0
/

... o

. . . o
(19)

where

for

Also, define the spatial operator

JC ^ diag[JC(A:)j € <ROTx"^

When these spatial operators are used, and with

defined, it follows from Eq. (11) that the spatial operator
expression for Vm is given by

Vm = (20)

B. Modal Mass Matrix for a Single Body
With Vs(jk) € (R6 denoting the spatial velocity of node A,

and

the vector of all nodal spatial velocities for the kth body, it
follows [see Eq. (5)] that

vs(k) = B*(k)VW + u(k)=[ii(k)9 B*(k)]vm(k) (21)
where

(22)

Since Ms(k) is the structural mass matrix of the kth body,
when Eq. (21) is used, the kinetic energy of the A:th body can
be written in the form

(k)Mm(k)Vm(k)

where

H*(k)Ms(k)B*(k)\
B(k)Ms(k)B*(k) ]

(23)
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Corresponding to the generalized speeds vector xW» Mm(k)
as defined in Eq. (23) is the modal mass matrix of the kth
body. In the block partitioning in Eq. (23), the superscripts
/ and r denote the flexible and rigid blocks, respectively.
Thus, Mff(k) represents the flex/flex coupling block, while
M%(k) is the flex/rigid coupling block of Mm(k). We will use
this notational convention throughout this paper. Note that
Mn(k) is precisely the rigid body spatial inertia of the kth
body. Indeed, Mm(k) reduces to the rigid-body spatial inertia
when the body flexibility is ignored, i.e., no modes are used,
since in this case nm(k) = 0 [and U(k) is null].

Because the vector l(kjk) from 5> to node jk depends on the
deformation of the node, the operator B(k) is also deforma-
tion dependent. From Eq. (23) it follows that while the block
3tt/f(k) is deformation independent, both the blocks M%(k)
and M% are deformation dependent. The detailed expression
for the modal mass matrix can be defined using modal inte-
grals that are computed as a part of the finite element struc-
tural analysis of the flexible bodies. These expressions for
the modal integrals and the modal mass matrix of the A:th
body can be found in Ref. 10. Often the deformation depen-
dent parts of the modal mass matrix are ignored, and free-free
eigenmodes are used for the assumed modes U(k). When this
is the case, M%(k) is zero and M$(k) is diagonal.

C. Recursive Propagation of Accelerations
Differentiating the velocity recursion equation (11), we ob-

tain the following recursive expression for the modal spatial
acceleration am(k) € (R91^ for the kth body:

am(k) (24)

where a(k)= V(k), and the Coriolis and centrifugal accelera-
tion term am(k) £ (RTO) is given by

dt dt
(25)

The detailed expressions for am(k) can be found in Ref. 10.
Defining

n _ r«r\1 f/y (ls\l C (Q^ ctriH n/ — rr\1 f ™ (k\\ C- fft *̂am — coijffwv/cjj t (n ana am — coi[a?wv/c;j t at

and using spatial operators, we can re-express Eq. (24) in the
form

The vector of spatial accelerations of all of the nodes for the
A:th body

C^sC^) = COl[a5(./A:)j € (R "5(

is obtained by differentiating Eq. (21):

as(*) = Vs(k) = [!!(£), B*(A:)]am(A:) + cr(A:) (27)

where

a(k) 4 (2g)

D. Recursive Propagation of Forces
Let f(k - 1) € (R6 denote the effective spatial force of inter-

action, referred to frame 5>_ j , between the kth and (k - l)th
bodies across the (k - l)th hinge. Recall that the (k - l)th
hinge is between node tk on the A:th body and node dk-ion the

(k - l)th body. Withfs(jk) € (R6 denoting the spatial force at
a node jk , the force balance equation for node tk is given by

~ 1) + Ms(tk)cts(tk) + b(tk) +fx(tk)
(29)

For all nodes other than node tk on the kth body, the force
balance equation is of the form

fs(Jk) = Ms(jk)ots(jk) + b(jk) + f K ( j k ) (30)

In Eqs. (29) and (30), fK(jk) are components of the vector

denotes the vector of spatial elastic strain forces for the nodes
on the A:th body, whereas b ( j k ) £ (R6 denotes the spatial gyro-
scopic force for node jk and is given by

(31)\_m(jk)S)(jk)S>(jk)p(jk)

where u(jk) € (R3 denotes the angular velocity of nodey*. Col-
lecting together the preceding equations and defining

0

<t>(tk9k-\)

(32)

it follows from Eqs. (29) and (30) that

fs(k) = C(k9k-\)f(k-\)

+ Ms(k)as(k) + b(k) + Ks(k)u(k)

where

/,(*) 4 col[/5(y,)) € (R6«*W

Noting that

\ = B(k)fs(k)

(33)

(34)

and using the principle of virtual work, it follows from Eq.
(21) that the modal spatial forces fm (k) € (ROT<*> for the kth
body are given by

Premultiplying Eq. (33) by

and using Eqs. (23), (27), and (35) leads to the following recur-
sive relationship for the modal spatial forces:

/»(*) = l B ( k ) C ( k 9 k - \ Mm(k)am(k)
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where

, k - l)fm(k - 1) + Mm(k)am(k)

Here we have defined

bm(k) 4

and the modal stiffness matrix

(36)

(37)

A \n*(k)K,(
' = L o (38)

The expression for Km(k) in Eq. (38) uses the fact that the
columns of B*(k) are indeed the deformation dependent rigid
body modes for the A:th body and hence they do not contribute
to its elastic strain energy. Indeed, when a deformation-depen-
dent structural stiffness matrix Ks(k) is used, we have

Ks(k)B*(k) = (39)

However, the common practice (also followed here) of using a
constant, deformation-independent structural stiffness matrix
leads to the anomalous situation wherein Eq. (39) does not
hold exactly. We ignore these fictitious extra terms on the
left-hand side of Eq. (39).

The velocity-dependent bias term bm(k) is formed using
modal integrals generated by standard finite element pro-
grams, and a detailed expression for it is given in Ref. 10.
From Eq. (36), the operator expression for the modal spatial
forces

f m = c o \ [ f m ( k ) } €(R^

for all of the bodies in the chain is given by

fm = am+bm + Km (40)

where

From the principle of virtual work, the generalized forces vec-
tor T € (R91 for the multibody system is given by the expression

(41)

£. Operator Expression for the System Mass Matrix
Collecting together the operator expressions in Eqs. (20),

(26), (40), and (41), we have

Vm = $*3C*x

fm =

T =

(R9lxDl

* am + bm + Km (43)

Here 911 is the system mass matrix for the serial chain and the
expression 3C$Mm$*3C* is referred to as the "Newton-Euler
operator factorization" of the mass matrix. 6 is the vector of
Coriolis, centrifugal, and elastic forces for the system.

It is noteworthy that the operator expressions for 911 and 6
are identical in form to those for rigid multibody systems.1'11

Indeed, the similarity is more than superficial, and the key
properties of the spatial operators that are used in the analysis
and algorithm development for rigid multibody systems also
hold for the spatial operators defined here. As a consequence,
a large part of the analysis and algorithms for rigid multibody
systems can be easily carried over and applied to flexible multi-
body systems. That is the approach adopted here.

III. Inverse Dynamics Algorithm
This section describes a recursive Newton-Euler inverse dy-

namics algorithm for computing the generalized forces Tt for
a given set of generalized accelerations x and system state
($,x). The inverse dynamics algorithm also forms a part of
forward dynamics algorithms such as those based on compos-
ite body inertias or the conjugate gradient method.12

Collecting together the recursive equations in Eqs. (11),
(24), (36), and (41), we obtain the following recursive Newton-
Euler inverse dynamics algorithm:

fork=N,..

Vm(k) =

am(k)

end loop

.,l

l,k)Vm(k

l,k)am(k am(k)

for k = l,...,N

fm(k) = *(Ar, k - l)fm(k - 1) + Mm(k)am(k) + bm(k)

end loop (44)

The structure of this algorithm closely resembles the recursive
Newton-Euler inverse dynamics algorithm for rigid multibody
systems.1'13 All external forces on the kih body are handled by
absorbing them into the gyroscopic force term bm(k). Base
mobility is handled by attaching an additional six-degree-of-
freedom hinge between the mobile base and an inertial frame.

By taking advantage of the special structure of $(k + l,k)
and JC(A:) in Eqs. (12) and (13), the Newton-Euler recursions
in Eq. (44) can be further simplified. Using block partitioning
and the super scripts/and r as before to denote the flexible and
rigid components, we have

<xm(k) u
U;,(*>.

(42)
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It is easy to verify that Eq. (45) is a simplified version of the
inverse dynamics algorithm in Eq. (44).

for k=N,...,l

+ ar
m(k)

end loop

/m(0) = 0

for £ = ! , . . . , AT

fm(k) = (3L(k)<l>(tk,k - \)fr
m(k -

(45)

Mm(k)am(k)

T(k) =

end loop

rwi
L Tr(k)\

Flexible multibody systems have actuators typically only at the
hinges. Thus, for the A:th body, only the subset of the general-
ized forces vector T(k) corresponding to the hinge actuator
forces Tr(k) can be set, whereas the remaining generalized
forces T-f(k) are zero. Therefore, in contrast with rigid multi-
body systems, flexible multibody systems are underactuated
systems,14 since the number of available actuators is less than
the number of motion degrees of freedom in the system. For
such underactuated systems, the inverse dynamics computa-
tions for the generalized force T are meaningful only when the
prescribed generalized accelerations \ form a consistent data
set. For a consistent set of generalized accelerations, the in-
verse dynamics computations will lead to a generalized force
vector Tsuch that Tf(.) = Q.

IV. Composite-Body Forward Dynamics Algorithm
The forward dynamics problem for a multibody system re-

quires computing the generalized accelerations x for a given
vector of generalized forces T and state of the system {$,x).
The composite-body forward dynamics algorithm described
below consists of the following steps: 1) computing the system
mass matrix 911, 2) computing the bias vector G, and 3) numer-
ically solving the following linear matrix equation for %•

(46)

Later in Sec. V we describe the recursive articulated-body for-
ward dynamics algorithm that does not require the explicit
computation of either 3TC or C.

It is evident from Eq. (46) that the components of the vector
6 are the generalized forces for the system when the general-
ized accelerations x are all zero. Thus G can be computed using
the inverse dynamics algorithm in Eq. (45). We describe next
an efficient composite-body-based recursive algorithm for the
computation of the mass matrix 911. This algorithm is based on
the following lemma, which contains a decomposition of the
mass matrix into block diagonal, block upper triangular, and
block lower triangular components.

Lemma_l: Define the composite body inertias R(k)
£ (ft9i(£)x9i(£) recursively for all of the bodies in the serial chain
as follows:

for k = 1 , . . . , N

R(k) = $(k, k - l)R(k -

end loop

Also define

, k - Mm(k)

(47)

Then we have the following spatial operator decomposition

$Mm<i>* = R + $R +R$>* (48)

where $ = $-/.
Proof: See Appendix A. D
Physically, R(k) is the modal mass matrix of the composite

body formed from all of the bodies outboard of the A:th hinge
by freezing all of their (deformation plus hinge) degrees of
freedom. It follows from Eq. (43) and Lemma 1 that

= 3C<l>Mm<J>*3C* =
(49)

Note that the three terms on the right of Eq. (49) are block
diagonal, block lower triangular, and block upper triangular,
respectively. The following algorithm for computing the mass
matrix 911 computes the elements of these terms recursively:

/?(()) = 0

for Ar = l , . . . , J

R(k) = $(k, k - Mm(k)

- \)Rrr(k - \)4>*(tk9k -

for y = (* + !),..., AT

9k) =

end loop

end loop (50)

The main recursion proceeds from tip to base and computes
the blocks along the diagonal of 9H. As each such diagonal
element is computed, a new recursion to compute the off-diag-
onal elements is spawned. The structure of this algorithm
closely resembles the composite rigid-body algorithm for com-
puting the mass matrix of rigid multibody systems.8'12 Like the
latter, it is also highly efficient. Additional computational sim-
plifications of the algorithm arising from the sparsity of both
3C/(A:) and 3£r(k) are easy to incorporate.
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V. Factorization and Inversion of the Mass Matrix
An operator factorization of the system mass matrix 3TC,

denoted the "innovations operator factorization," is derived
in this section. This factorization is an alternative to the New-
ton-Euler factorization in Eq. (43) and, in contrast with the
latter, the factors in the innovations factorization are square
and invertible. Operator expressions for the inverse of these
factors are developed and these immediately lead to an opera-
tor expression for the inverse of the mass matrix. The operator
factorization and inversion results here closely resemble the
corresponding results for rigid multibody systems (see Ref. 1).

Given below is a recursive algorithm that defines some re-
quired articulated-body quantities:

for k = 1, . . . , TV

P(k) = $(£, k - (k - , k-l)

D(k) =

G(k) = P(k)3£*(k)D~l(k)

K(k + l,k) = $(£ + l9k)G(k)

= T(k)P(k) €

l , k ) f ( k ) €

end loop (51)

The operator P € (R91 x ̂  is defined as a block diagonal matrix
with the A:th diagonal element being P(k). The quantities de-
fined in Eq. (51) form the component elements of the follow-
ing spatial operators:

D i JCP5C* =

T I - G JC -

8* 4 8*7 (52)

The only nonzero block elements of K and 8* are K(k + l,k)
and V(k + I,/:), respectively, along the first subdiagonal.

As in the case for 8$, 8* is nilpotent, so we can define the
operator ^ as follows:

(53)

where

-!)• for

The structure of the operators 8* and ¥ is identical to that of
the operators 8$ and $ except that the component elements are
now V(iJ) rather than $(/,./). Also, the elements of ¥ have
the same semigroup properties as the elements of the operator
$, and as a consequence, high-level operator expressions in-
volving them can be directly mapped into recursive algorithms,

and the explicit computation of the elements of the operator ¥
is not required.

The innovations operator factorization of the mass matrix is
defined in the following lemma.

Lemma 2:

(54)

Proof: See Appendix A. D
Note that the factor [7 + 3C<i>#] € (R9lx91 is square, block

lower triangular and nonsingular, whereas D is a block diag-
onal matrix. This factorization provides a closed-form expres-
sion for the block LDL* decomposition of 9H. The following
lemma gives the closed-form operator expression for the in-
verse of the factor [/ +

Lemma 3:
l = [I - (55)

Proof: See Appendix A. D
It follows from Lemmas 2 and 3 that the operator expression

for the inverse of the mass matrix is given by Lemma 4.
Lemma 4:

= [7- (56)

Once again, note that the factor [7 - 3C^K] is square, block
lower triangular, and nonsingular, and so Lemma 4 provides
a closed-form expression for the block LDL* decomposition
of arc-1.
VI. Articulated-Body Forward Dynamics Algorithm

We first use the operator expression for the mass matrix
inverse developed in Sec. V to obtain an operator expression
for the generalized accelerations \. This expression directly
leads to a recursive algorithm for the forward dynamics of the
system. The structure of this algorithm is completely identical
in form to the articulated-body algorithm for serial rigid multi-
body systems. The computational cost of this algorithm is
further reduced by separately processing the flexible and hinge
degrees of freedom at each step in the recursion, and this leads
to the articulated-body forward dynamics algorithm for serial
flexible multibody systems. This algorithm is an alternative to
the composite-body forward dynamics algorithm developed
earlier.

The following lemma describes the operator expression for
the generalized accelerations \ in terms of the generalized
forces T.

Lemma 5:

_ K*ty*am (51}•*Y * um \->')

Proof: See Appendix A. D
As in the case of rigid multibody systems,1'2 the direct recur-

sive implementation of Eq. (57) leads to the following recur-
sive forward dynamics algorithm:

for k = 1,. . . , N

z(k) = *(k, k - P(k)am(k) + bm(k)

e(k) = T(k) -

end loop (58)
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fOTk=N,...,l

am(k)

end loop

The structure of this algorithm is closely related to the struc-
ture of the well-known Kalman filtering and smoothing algo-
rithms.8 All of the degrees of freedom for each body [as char-
acterized by the joint map matrix JC*(.)] are processed
together at each recursion step in this algorithm. However, by
taking advantage of the sparsity and special structure of the
joint map matrix, additional reduction in computational cost
is obtained by processing the flexible degrees of freedom and
the hinge degrees of freedom separately. These simplifications
are described in the following sections.

A. Simplified Algorithm for the Articulated-Body Quantities
Instead of a detailed derivation, we describe here the con-

ceptual basis for the separation of the modal and hinge degrees
of freedom for each body. First we recall the velocity recursion
equation in Eq. (11)

(59)

(60)
L ***•'/• \ t )_]

Introducing a dummy variable k', we can rewrite Eq. (59) as

Vm(kr) = 3>*(k + l,k 'Wm(k +1) + 3£*(k)ii(k)

Vm(k) = $*(k',k)Vm(k') + 3C?(A:)|8(A:) (61)

where

L A ^/^ _i_ 1 ^\ an(^

Vm(k) = $*(k + l,k)Vm(k +1) + 3

and the partitioned form of JC(&) in Eq. (13)

Conceptually, each flexible body is now associated with two
new bodies. The first one has the same kinematical and mass/
inertia properties as the real body and has the flexible degrees

of freedom. The second body is a fictitious body that is mass-
less and has zero extent. It is associated with the hinge degrees
of freedom. The serial chain now contains twice the number of
bodies as the original one with half of the new bodies being
fictitious ones. The new JC* operator now has the same num-
ber of columns but twice the number of rows as the original
JC* operator. The new $ operator has twice as many rows and
columns as the original one. Repeating the analysis described
in the preceding sections, we once again obtain the same oper-
ator expression as Eq. (57). This expression also leads to a
recursive forward dynamics algorithm as in Eq. (58). How-
ever, each sweep in the algorithm now contains twice as many
steps as the original algorithm. But since each step now pro-
cesses only a smaller number of degrees of freedom, this leads
to a reduction in the overall cost. The new algorithm [replacing
Eq. (51)] for computing the articulated body quantities is as
follows:

for k = 1,..., N

-l) € (R6x

P(k) = a(k)T(k)CL*(k) + Mm(k)
Df(k) = Wf(k)P(k)3Cf(k) € (R»«(

Gf(k) = P(k)3Cf(k)Df-l(k) 6

rf(k) = 1- Gf(k)3Cf(k)

Pr(k) = Tf(k)P(k) €

Dr(k) = Wr(k)Pr

Gr(k) = Pr(k)W*(k)Dr-l(k) €

Tr(k) = 1- Gr(k)3Cr(k) €

p + (k) = Tr(k)Pr(k) €

l,k)f(k)

end loop (62)

We now use the sparsity of <R(k + l,k)9 JC/fr), and JCr(A:) to
further simplify the preceding algorithm. Using the symbol
"x" to indicate "don't care" blocks, the structure in block
partitioned form of some of the quantities in Eq. (62) is given
below:

T(k) = </>(tk,k - 1)P*+ (k - l)4>*(tk,k - 1), [P£ (k) is defined below]

where g ( k ) = &**»>* W, ^ [Pr/(A:), Prr(Jt)]JC;(A:) 6 (R6 xnm (k)

Pr(k) = where PR(k) = Prr(k) - g(k)p*(k) € (R6x6

Dr(k) = Hs(k)PR(k)H%(k) € W

x

+ (k) =

^ / f
LfR(K)

X

- /^TR(k)

x x

x "R (

where GR(k) ± PR(k)H^(k)D~l(k) €

where P+ (k) = rR(k)PR(k) € (R6x6
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Using the structure just described, the simplified algorithm for
computing the articulated body quantities is as follows:

for £ = !,..., TV

P(k) =

PR (0) = 0

)PjJ- (k - I)<l>*(tk9k -

k) + Mm(k)

TR(k) = I - GR(k)Hs(k)

end loop (63)

B. Simplified Articulated-Body Forward Dynamics Algorithm
The complete recursive articulated-body forward dynamics

algorithm for a serial flexible multibody system follows di-
rectly from the recursive implementation of the expression in
Eq. (57). The algorithm consists of the following steps: 1) a
base-to-tip recursion as in Eq. (45) for computing the modal
spatial velocities Vm(k) and the Coriolis and gyroscopic terms
am(k) and bm(k) for all of the bodies; 2) computation of the
articulated body quantities using Eqs. (B4) and (63); and 3) a
tip-to-base recursion followed by a base-to-tip recursion for
the joint accelerations x as described below:

- = !,... ,7V

ef(k) =

vf(k) = D f l ( k ) e f ( k ) <E (R11'

(R6

end loop

for A:-TV, . . . , 1

+ ( l f \ __ fk*(f

' = M*>-

(64)

aR(k) = a£ (k) + H£(k)fr(k) + amR(k) 6 (R6

ri(k) = vf(k) - g*(k)aR(k) € (R""^

awW = L«

R (k)

end loop

The recursion in Eq. (64) is obtained by simplifying the recur-
sions in Eq. (58) in the same manner as described in Sec. VI.A.

In contrast with the composite-body forward dynamics
algorithm described in Sec. IV, the articulated-body forward
dynamics algorithm does not require the explicit computation
of either 311 or C. The structure of this articulated-body algo-
rithm closely resembles the recursive articulated-body forward
dynamics algorithm for rigid multibody systems described in
the literature.1'15

The articulated-body forward dynamics algorithm has been
used to develop a dynamics simulation software package
(called DARTS) for the high-speed, real-time, hard war e-in-
the-loop simulation of planetary spacecraft. Validation of the
DARTS software was carried out by comparing simulation
results with those from a standard, flexible, multibody simula-
tion package.6 The results from the two independent simula-
tions have shown complete agreement.

VII. Computational Cost
This section discusses the computational cost of the compos-

ite-body and the articulated-body forward dynamics algo-
rithms. For low-spin multibody systems, it has been suggested
in Ref. 16 that using ruthlessly linearized models for each flex-
ible body can lead to significant computational reduction with-
out sacrificing fidelity. These linearized models are consider-
ably less complex and do not require much of the modal
integral data for the individual flexible bodies. All computa-
tional costs given below are based on the use of ruthlessly
linearized models and the computationally simplified steps de-
scribed in Appendix B.

Flexible multibody systems typically involve both rigid and
flexible bodies and, in addition, different sets of modes are
used to model the flexibility of each body. As a consequence,
where possible, we describe the contribution of a typical
(nonextremal) flexible body, denoted the A:th body, to the
overall computational cost. Note that the computational cost
for extremal bodies as well as for rigid bodies is lower than that
for a nonextremal flexible body. Summing up this cost for all
the bodies in the system gives a figure close to the true compu-
tational cost for the algorithm. Without any loss in generality,
we have assumed here that all of the hinges are single-degree-
of-freedom rotary joints and that free-free assumed modes are
being used. The computational costs are given in the form of
polynomial expressions for the number of floating point oper-
ations, with the symbol M denoting multiplications and A
denoting additions.

A. Computational Cost of the Composite-Body Forward Dynamics
Algorithm

The composite-body forward dynamics algorithm described
in Sec. IV is based on solving the linear matrix equation

The computational cost of this forward dynamics algorithm is
given below:

1) Cost of computing R (k) for the A:th body using the algo-
rithm in Eq. (50) is

97 1
N*l(k)+ — nm(k)+\16\A
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Composite Body /'

2) The cost for the tip-to-base recursion sweep in Eq. (64)
for the kth body is

3 4 5 6 7
Number of modes/body

Fig. 2 Comparison of the computational cost in floating point oper-
ations for the articulated- and composite-body forward dynamics
algorithms for serial-chain multibqdy systems with 10 flexible bodies.

2) Contribution of the kth body to the cost of computing
31Z [excluding cost of R(k)] using the algorithm in Eq. (50) is

3) Setting the generalized accelerations x = 0, the vector 6
can be obtained by using the inverse dynamics algorithm de-
scribed in Eq. (45) for computing the generalized forces T. The
contribution of the kth body to the computational cost for
e(A:)is

4) The cost of computing T-G is (91} A.
5) The cost of solving the linear equation in Eq. (46) for the

accelerations \ is

6
The overall complexity of the composite-body forward dy-
namics algorithm is 0(3l3).

B. Computational Cost of the Articulated-Body Forward Dynamics
Algorithm

The articulated-body forward dynamics algorithm is based
on the recursions described in Eqs. (B4), (63), and (64). Since
the computations in Eq. (B4) can be carried out prior to the
dynamics simulation, the cost of this recursion is not included
in the cost of the overall forward dynamics algorithm de-
scribed below:

1) The algorithm for the computation of the articulated
body quantities is given in Eq. (63). The step involving the
computation ofDf 1 (A:) can be carried out either by an explicit
inversion of Df(k) with O[n3

m(k)] cost, or by the indirect
procedure described in Eq. (B3) with O[n^(k)] cost. The first
method is more efficient than the second one for nm(k)<l .

a) Cost of Eq. (63) for the kth body based on the explicit
inversion of Df(k) [used when nm(k)<l] is

b) Cost of Eq. (63) for the kth body based on the indirect
computation of Dfl(k) [used when nm(k)>S] is

3) The cost for the base-to-tip recursion sweep in Eq. (64)
for the kih body is

The overall complexity of this algorithm is O(Nn2
n), where nm

is an upper bound on the number of modes per body in the
system.

From a comparison of the computational costs, it is clear
that the articulated-body algorithm is more efficient than the
composite-body algorithm as the number modes and bodies in
the multibody system increases. Figure 2 contains a plot of the
computational cost (in floating point operations) of the com-
posite-body and the articulated-body forward dynamics algo-
rithms vs the number of assumed-modes per body for a serial
chain with 10 flexible bodies. The articulated-body algorithm
is faster by over a factor of 3 for 5 modes per body, and by
over a factor of 7 for the case of 10 modes per body. The
divergence between the costs for the two algorithms becomes
even more rapid as the number of bodies is increased.

VIII. Extensions to General Topology
Flexible Multibody Systems

For rigid multibody systems, Ref. 11 describes the exten-
sions to the dynamics formulation and the algorithms that are
required as the toplogy of the system goes from a serial chain
topology, to a tree topology, and finally to a closed-chain
topology system. The key to this progression is the invariance
of the operator description of the system dynamics to increases
in the topological complexity of the system. Indeed, as seen
here, the operator description of the dynamics remains the
same even when the multibody system contains flexible rather
than rigid component bodies. Thus, using the approach in
Ref. 1 1 for rigid multibody systems, the dynamics formulation
and algorithms for flexible multibody systems with serial to-
pology can be extended in a straightforward manner to systems
with tree or closed-chain topology. Based on these observa-
tions, extending the serial chain dynamics algorithms de-
scribed in this paper to tree topology flexible multibody sys-
tems requires the following steps:

1) For each outward sweep involving a base-to-tip(s) recur-
sion, at each body, the outward recursion must be continued
along each outgoing branch emanating from the current body.

2) For each inward sweep involving a tip(s)-to-base recur-
sion, at each body, the recursion must be continued inward
only after summing up contributions from each of the other
incoming branches for the body.

A closed-chain topology flexible multibody system can be
regarded as a tree topology system with additional closure
constraints. As described in Ref. 11, the dynamics algorithm
for closed-chain systems consists of recursions involving the
dynamics of the tree topology system, and in addition the
computation of the closure constraint forces. The computa-
tion of the constraint forces requires the effective inertia of the
tree topology system reflected to the points of closure. The
algorithm for closed-chain flexible multibody systems for
computing these inertias is identical in form to the recursive
algorithm described in Ref. 1 1 .

IX. Conclusions
This paper uses spatial operator methods to develop a new

dynamics formulation for flexible multibody systems. A key
feature of the formulation is that the operator description of
the flexible system dynamics is identical in form to the cor-
responding operator description of the dynamics of rigid
multibody systems. A significant advantage of this unifying
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approach is that it allows ideas and techniques for rigid multi-
body systems to be easily applied to flexible muhibody sys-
tems. The Newton-Euler operator factorization of the mass
matrix forms the basis for recursive algorithms such as those
for the inverse dynamics, the computation of the mass matrix,
and the composite-body forward dynamics algorithm for the
flexible multibody system. Subsequently, we develop the artic-
ulated-body forward dynamics algorithm, which, in contrast
to the composite-body forward dynamics algorithm, does not
require the explicit computation of the mass matrix. While the
computational cost of the algorithms depends on factors such
as the topology and the amount of flexibility in the multibody
system, in general, the articulated-body forward dynamics
algorithm is by far the more efficient algorithm for flexible
multibody systems containing even a small number of flexible
bodies. All of the algorithms are closely related to those en-
countered in the domain of Kalman filtering and smoothing.
Whereas the major focus in this paper is on flexible multibody
systems with serial chain topology, the extensions to tree and
closed-chain topologies are straightforward and are described
as well.

Appendix A: Proofs of the Lemmas
At the operator level, the proofs of the lemmas in this paper

are completely analogous to those for rigid multibody sys-
tems.1'2

Proof of Lemma 1
Using operators, we can rewrite Eq. (47) in the form

Mm = R - (Al)

From Eq. (19) it follows that $8$ = 8$$ = $ - 7 = 4>. Multiply-
ing Eq. (Al) from the left and right by $ and <£* respectively
leads to

Proof of Lemma 2
It is easy to verify that rPr* = rP. As a consequence, the

recursion for P(.) in Eq. (51) can be rewritten in the form

Mm = P - S*PS* = P - S*P8 1 = P - S*PSJ + KDK*
(A2)

Pre- and post-multiplying Eq. (A2) by $ and <J>* then leads to

<S>Mm$* = P + 4>P + Pi* + $KDK*3>*

Hence,

= D + DK*$* JC* + * JC*

Proof of Lemma 3
Using a standard matrix identity, we have that

Note that

*~! = / - 8* = (7-8*)

from which it follows that

(A3)

(A4)

Using this with Eq. (A3), it follows that

= / - Oefcl*-1^-1* = / -

Proof of Lemma 5
From Eqs. (42) and (43), the expression for the generalized

accelerations x is given by

x [T - JCS [Mm $*am + bm+Km &]]

From Eq. (A4) we have that

[7 - JC*#] 3C$ = 3C*[*- '

Thus Eq. (A5) can be written as

From Eq. (A2) it follows that

Mm=P- 8*P8£ =>

and so Eq. (A7) simplifies to

(A5)

(A6)

(A7)

P<l* (A8)

(A9)

From Eq. (A4) we have that

[7- JC^A']*D-1JCP$* = [7-

(A10)

Using this in Eq. (A9) leads to the result.

Appendix B: Ruthless Linearization
of Flexible Body Dynamics

It has been pointed out in recent literature16'17 that the use of
modes for modeling body flexibility leads to "premature lin-
earization" of the dynamics in the sense that, while the dy-
namics model contains deformation-dependent terms, the geo-
metric stiffening terms are missing. These missing geometric
stiffening terms are the dominant terms among the first-order
(deformation) dependent terms. In general, it is necessary to
take additional steps to recover the missing geometric stiffness
terms to obtain a "consistently" linearized model with the
proper degree of fidelity.

However for systems with low spin rate, there is typically
little loss in model fidelity when the deformation- and defor-
mation rate-dependent terms are dropped altogether from the
dynamical equations of motion.16 Such models have been
dubbed the "ruthlessly linearized models." These linearized
models are considerably less complex and do not require
most of the modal integrals data for each individual flexible
body. In this model, the approximations to Mm(k), am(k),
and bm(k) are as follows:

am(k) °

(Bl)

With this approximation, Mm(k) is constant in the body
frame, whereas am(k) and bm(k) are independent of r](k)
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and r](k). With this being the case, the formation of Dfl in
Eq. (63) can be simplified. Using the matrix identity

(B2)

which holds for general matrices A, B, and C, it is easy to
verify that

(B3)Df~ l ( k ) = A(£) - T(£) [r - l

where the matrices A(£), ti(k), and T(&) are precomputed just
once prior to the dynamical simulation as follows:

for £ = !,..., TV

(R6x6

end loop (B4)

The use of Eq. (B3) reduces the computational cost for com-
puting the articulated-body inertias to a quadratic rather than
a cubic function of the number of modes.
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